Home
Class 6
MATHS
State True or False: 435-:(3xx4)=(435-...

State True or False:
`435-:(3xx4)=(435-:3)xx(435-:4)`

Text Solution

AI Generated Solution

The correct Answer is:
To determine whether the statement \( 435 \div (3 \times 4) = (435 \div 3) \times (435 \div 4) \) is true or false, we can evaluate both sides of the equation step by step. ### Step 1: Evaluate the Left-Hand Side (LHS) The left-hand side of the equation is: \[ LHS = 435 \div (3 \times 4) \] First, calculate \( 3 \times 4 \): \[ 3 \times 4 = 12 \] Now substitute this back into the LHS: \[ LHS = 435 \div 12 \] ### Step 2: Calculate \( 435 \div 12 \) Now, we perform the division: \[ 435 \div 12 = 36.25 \] So, \[ LHS = 36.25 \] ### Step 3: Evaluate the Right-Hand Side (RHS) The right-hand side of the equation is: \[ RHS = (435 \div 3) \times (435 \div 4) \] First, calculate \( 435 \div 3 \): \[ 435 \div 3 = 145 \] Next, calculate \( 435 \div 4 \): \[ 435 \div 4 = 108.75 \] Now substitute these values back into the RHS: \[ RHS = 145 \times 108.75 \] ### Step 4: Calculate \( 145 \times 108.75 \) Now, we perform the multiplication: \[ 145 \times 108.75 = 15788.75 \] So, \[ RHS = 15788.75 \] ### Step 5: Compare LHS and RHS Now we compare the two results: \[ LHS = 36.25 \quad \text{and} \quad RHS = 15788.75 \] Since \( 36.25 \neq 15788.75 \), we conclude that: \[ LHS \neq RHS \] ### Conclusion Therefore, the statement \( 435 \div (3 \times 4) = (435 \div 3) \times (435 \div 4) \) is **False**. ---
Promotional Banner

Similar Questions

Explore conceptually related problems

State True or False: 816-:(23xx5)=(815-:23)xx(816-:5)

State True or False: 475xx(16-:4)=(475xx16)-:(475xx4)

State True or False: 654xx342=342xx654

State True or False : Fcl_3 exists

State True or False: 525xx(12-3)=(525xx12)-(525xx3)

State whether true or false. -3-(-8)=-5

State whether true or false: 2!xx3!=6!

State, true or false : (iii) (7)/(9)=(7xx5)/(9xx5)

State whether true or false. 12-15=-3