Home
Class 6
MATHS
State True or False: 475xx(16-:4)=(475...

State True or False:
`475xx(16-:4)=(475xx16)-:(475xx4)`

Text Solution

AI Generated Solution

The correct Answer is:
To determine whether the statement \( 475 \times (16 \div 4) = (475 \times 16) \div (475 \times 4) \) is true or false, we will evaluate both sides of the equation step by step. ### Step 1: Calculate the Left-Hand Side (LHS) The left-hand side of the equation is: \[ 475 \times (16 \div 4) \] First, we need to calculate \( 16 \div 4 \): \[ 16 \div 4 = 4 \] Now substitute this back into the equation: \[ 475 \times 4 \] Now calculate \( 475 \times 4 \): \[ 475 \times 4 = 1900 \] So, the LHS is: \[ \text{LHS} = 1900 \] ### Step 2: Calculate the Right-Hand Side (RHS) The right-hand side of the equation is: \[ (475 \times 16) \div (475 \times 4) \] First, calculate \( 475 \times 16 \): \[ 475 \times 16 = 7600 \] Next, calculate \( 475 \times 4 \): \[ 475 \times 4 = 1900 \] Now substitute these values back into the RHS: \[ 7600 \div 1900 \] Now calculate \( 7600 \div 1900 \): \[ 7600 \div 1900 = 4 \] So, the RHS is: \[ \text{RHS} = 4 \] ### Step 3: Compare LHS and RHS Now we compare the results from both sides: \[ \text{LHS} = 1900 \quad \text{and} \quad \text{RHS} = 4 \] Since \( 1900 \neq 4 \), we conclude that: \[ \text{LHS} \neq \text{RHS} \] ### Final Answer Thus, the statement \( 475 \times (16 \div 4) = (475 \times 16) \div (475 \times 4) \) is **False**. ---
Promotional Banner

Similar Questions

Explore conceptually related problems

State True or False: 525xx(12-3)=(525xx12)-(525xx3)

State True or False: 435-:(3xx4)=(435-:3)xx(435-:4)

State True or False: 654xx342=342xx654

State True or False: 816-:(23xx5)=(815-:23)xx(816-:5)

State, true or false : (iii) (7)/(9)=(7xx5)/(9xx5)

State whether true or false: 2!xx3!=6!

State true or false : 7a xx bc is a binomial

Fill in the blanks to make each of the following a true statement: (i) 785xx 0= (ii) 4567xx1= (iii) 475xx129=129xx (iv) xx 8975=8975xx1243 (v) 10xx100xx...=10000

Complete the following multiplecation table : Hence , state true or false : 0xx(-4)=-4

Evaluate: 10.546xx 16