Home
Class 6
MATHS
Find: 1(2)/(5)+2(1)/(3)...

Find: `1(2)/(5)+2(1)/(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \(1 \frac{2}{5} + 2 \frac{1}{3}\), we will follow these steps: ### Step 1: Convert Mixed Numbers to Improper Fractions First, we convert the mixed numbers into improper fractions. For \(1 \frac{2}{5}\): - Multiply the whole number (1) by the denominator (5): \(1 \times 5 = 5\) - Add the numerator (2): \(5 + 2 = 7\) - So, \(1 \frac{2}{5} = \frac{7}{5}\) For \(2 \frac{1}{3}\): - Multiply the whole number (2) by the denominator (3): \(2 \times 3 = 6\) - Add the numerator (1): \(6 + 1 = 7\) - So, \(2 \frac{1}{3} = \frac{7}{3}\) ### Step 2: Add the Improper Fractions Now we need to add \(\frac{7}{5}\) and \(\frac{7}{3}\). To do this, we need a common denominator. The denominators are 5 and 3. The least common multiple (LCM) of 5 and 3 is 15. ### Step 3: Convert Fractions to Have a Common Denominator Now we convert both fractions to have the common denominator of 15. For \(\frac{7}{5}\): - Multiply the numerator and denominator by 3: \[ \frac{7 \times 3}{5 \times 3} = \frac{21}{15} \] For \(\frac{7}{3}\): - Multiply the numerator and denominator by 5: \[ \frac{7 \times 5}{3 \times 5} = \frac{35}{15} \] ### Step 4: Add the Converted Fractions Now we can add the two fractions: \[ \frac{21}{15} + \frac{35}{15} = \frac{21 + 35}{15} = \frac{56}{15} \] ### Step 5: Convert Back to Mixed Number (if required) The fraction \(\frac{56}{15}\) can be converted back to a mixed number: - Divide 56 by 15, which gives us 3 with a remainder of 11. - So, \(\frac{56}{15} = 3 \frac{11}{15}\). ### Final Answer Thus, \(1 \frac{2}{5} + 2 \frac{1}{3} = \frac{56}{15}\) or \(3 \frac{11}{15}\). ---
Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that : Find the sum of the infinite series 1+(2)/(3).(1)/(2)+(2.5)/(3.6)((1)/(2))^(2)+(2.5.8)/(3.6.9)((1)/(2))^(3)+......oo

Find a rational number between : (i)(3)/(7)and(5)/(14)""(ii)(2)/(5)and-(1)/(3)""(iii)-(1)/(3)and-(1)/(2)

If a- (1)/(a) = 5 , find a^(2) +(1)/(a^(2)) - 3a + (3)/(a).

Evaluate : (ii) (2)/(3)+(-4)/(5)-(1)/(3)-(2)/(5)

Evaluate : (ii) (2)/(3)+(-4)/(5)+(1)/(3)+(2)/(5)

Use direct method to evaluate : (x) ((3)/(5) a + (1)/(2) ) ((3)/(5) a - (1)/(2) )

Find the sum to infinity of the G.P. (i) 2, (2)/(3), (2)/(9),…. (ii) 5, - 1, (1)/(5), …

Find the distance between the following paris of points : ((3)/(5),2) and (-(1)/(5),1(2)/(5))

Find the sum of: 24 terms and n terms of 2 (1)/(2) , 3 (1)/(3) , 4 (1)/(6) ,5 ,......,

Find the (i) 2/5 -: 1/2 (ii) 4/9 -: 2/3 (iii) 3/7 -: 8/7 (iv) (2) 1/3 -: 3/5 (v) (3) 1/2 -: 8/3 (vi) 2/5 -: (1) 2/3 (vii) (3) 1/5 -: (1) 2/3 (viii) (2) 1/5 -: (1) 1/5