Home
Class 6
MATHS
Find: 3+1(4)/(15)+3/(20)...

Find: `3+1(4)/(15)+3/(20)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( 3 + \frac{1 \frac{4}{15}}{1} + \frac{3}{20} \), we will follow these steps: ### Step 1: Convert the mixed fraction to an improper fraction The mixed fraction \( 1 \frac{4}{15} \) can be converted to an improper fraction. The formula to convert a mixed number to an improper fraction is: \[ \text{Improper Fraction} = \left(\text{Whole Number} \times \text{Denominator} + \text{Numerator}\right) / \text{Denominator} \] For \( 1 \frac{4}{15} \): \[ \text{Improper Fraction} = \left(1 \times 15 + 4\right) / 15 = \frac{15 + 4}{15} = \frac{19}{15} \] So, we can rewrite the expression as: \[ 3 + \frac{19}{15} + \frac{3}{20} \] ### Step 2: Convert whole number to a fraction Next, we need to express the whole number \( 3 \) as a fraction with a common denominator. We can express \( 3 \) as: \[ 3 = \frac{3 \times 60}{60} = \frac{180}{60} \] ### Step 3: Find the least common multiple (LCM) Now, we need to find the LCM of the denominators \( 15 \) and \( 20 \). - The multiples of \( 15 \) are \( 15, 30, 45, 60, 75, 90, \ldots \) - The multiples of \( 20 \) are \( 20, 40, 60, 80, 100, \ldots \) The LCM of \( 15 \) and \( 20 \) is \( 60 \). ### Step 4: Convert each fraction to have the common denominator Now we convert each fraction to have the common denominator of \( 60 \): 1. For \( \frac{19}{15} \): \[ \frac{19}{15} = \frac{19 \times 4}{15 \times 4} = \frac{76}{60} \] 2. For \( \frac{3}{20} \): \[ \frac{3}{20} = \frac{3 \times 3}{20 \times 3} = \frac{9}{60} \] ### Step 5: Add the fractions Now we can add all the fractions together: \[ \frac{180}{60} + \frac{76}{60} + \frac{9}{60} = \frac{180 + 76 + 9}{60} = \frac{265}{60} \] ### Step 6: Simplify the fraction Next, we simplify \( \frac{265}{60} \). We can divide both the numerator and the denominator by \( 5 \): \[ \frac{265 \div 5}{60 \div 5} = \frac{53}{12} \] ### Step 7: Convert to a mixed number Finally, we convert \( \frac{53}{12} \) to a mixed number: 1. Divide \( 53 \) by \( 12 \): - \( 12 \) goes into \( 53 \) \( 4 \) times (since \( 12 \times 4 = 48 \)). - The remainder is \( 53 - 48 = 5 \). So, we can write: \[ \frac{53}{12} = 4 \frac{5}{12} \] ### Final Answer Thus, the final answer is: \[ 4 \frac{5}{12} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the sum: 4/(15)+3/(20)

Find: 3(1)/(6)-2(1)/(15)

Simplify: (-3)/(10)+7/(15)+3/(-20)+(-9)/(10)+(13)/(15)+(13)/(-20)

Find: (11)/(4) + 7 (3)/(4) xx (8)/(15) div 2 (1)/(2)

Find: 4/(15)+17/(20)

Evaluate: c. 4 (11)/(15) - 2 (7)/(20)

Evaluate : (i) (3)/(4)+(5)/(6)+(-1)/(4)+(-7)/(6) (ii) (9)/(-10)+(4)/(15)+(-3)/(20)+(-3)/(10)+(8)/(15)+(9)/(-20)

Find : 3/4+\ ((-3)/5)+((-2)/3)+5/8+\ ((-4)/(15))

Find (1)/(3)+(1)/(2.3^(2))+(1)/(3.3^(3))+(1)/(4.3^(4))+….oo=?

Find : a^3 - (1)/( a^3) , if a - (1)/( a) =4 .