Home
Class 6
MATHS
Find: 3(1)/(6)-2(1)/(15)...

Find:
`3(1)/(6)-2(1)/(15)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( 3\frac{1}{6} - 2\frac{1}{15} \), we will follow these steps: ### Step 1: Convert the mixed fractions to improper fractions 1. For \( 3\frac{1}{6} \): - Multiply the whole number (3) by the denominator (6): \( 3 \times 6 = 18 \) - Add the numerator (1): \( 18 + 1 = 19 \) - So, \( 3\frac{1}{6} = \frac{19}{6} \) 2. For \( 2\frac{1}{15} \): - Multiply the whole number (2) by the denominator (15): \( 2 \times 15 = 30 \) - Add the numerator (1): \( 30 + 1 = 31 \) - So, \( 2\frac{1}{15} = \frac{31}{15} \) ### Step 2: Rewrite the expression Now we can rewrite the expression as: \[ \frac{19}{6} - \frac{31}{15} \] ### Step 3: Find the least common multiple (LCM) of the denominators The denominators are 6 and 15. To find the LCM: - The prime factorization of 6 is \( 2 \times 3 \) - The prime factorization of 15 is \( 3 \times 5 \) - The LCM is found by taking the highest power of each prime: \( 2^1 \times 3^1 \times 5^1 = 30 \) ### Step 4: Convert each fraction to have the same denominator 1. For \( \frac{19}{6} \): - Multiply the numerator and denominator by 5: \[ \frac{19 \times 5}{6 \times 5} = \frac{95}{30} \] 2. For \( \frac{31}{15} \): - Multiply the numerator and denominator by 2: \[ \frac{31 \times 2}{15 \times 2} = \frac{62}{30} \] ### Step 5: Subtract the fractions Now we can subtract: \[ \frac{95}{30} - \frac{62}{30} = \frac{95 - 62}{30} = \frac{33}{30} \] ### Step 6: Simplify the fraction The fraction \( \frac{33}{30} \) can be simplified: - Both the numerator and denominator can be divided by 3: \[ \frac{33 \div 3}{30 \div 3} = \frac{11}{10} \] ### Final Answer Thus, the final answer is: \[ \frac{11}{10} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Find: (1)/(12)-(2)/((-15))

Evaluate: 3(4)/(5)div(-2(1)/(15))

Find: 3+1(4)/(15)+3/(20)

Find (1+x)^(6) - (1-x)^(6) . Hence evaluate (1+sqrt3)^(6) - (1-sqrt3)^(6)

Find the value of x and y (1)/(2x)+(1)/(3y)=2 (1)/(3x)+(1)/(2y)=(13)/(6)

Evaluate the following: (i) 6! -5! (ii) (30!)/(28!) (iii) (15!)/(12!3!) (iv) (1)/(4!)+(1)/(5!) +(1)/(6!)

Solve : (2x+1)/(10)-(3-2x)/(15)=(x-2)/(6) . Hence, find the value of y, if (1)/(x)+(1)/(y)=3 .

Find the sum of: 24 terms and n terms of 2 (1)/(2) , 3 (1)/(3) , 4 (1)/(6) ,5 ,......,

Evaluate : (i) (3)/(4)+(5)/(6)+(-1)/(4)+(-7)/(6) (ii) (9)/(-10)+(4)/(15)+(-3)/(20)+(-3)/(10)+(8)/(15)+(9)/(-20)

If x=(1)/(5)+(1.3)/(5.10)+(1.3.5)/(5.10.15)+….oo then find 3x^(2)+6x.