Home
Class 6
MATHS
Find: 4(3)/(7)-2(4)/(7)...

Find:
`4(3)/(7)-2(4)/(7)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( 4\frac{3}{7} - 2\frac{4}{7} \), we will follow these steps: ### Step 1: Convert Mixed Numbers to Improper Fractions First, we need to convert the mixed numbers into improper fractions. For \( 4\frac{3}{7} \): - Multiply the whole number (4) by the denominator (7): \[ 4 \times 7 = 28 \] - Add the numerator (3) to this product: \[ 28 + 3 = 31 \] - So, \( 4\frac{3}{7} \) becomes: \[ \frac{31}{7} \] For \( 2\frac{4}{7} \): - Multiply the whole number (2) by the denominator (7): \[ 2 \times 7 = 14 \] - Add the numerator (4) to this product: \[ 14 + 4 = 18 \] - So, \( 2\frac{4}{7} \) becomes: \[ \frac{18}{7} \] ### Step 2: Subtract the Improper Fractions Now we can subtract the two improper fractions: \[ \frac{31}{7} - \frac{18}{7} \] Since the denominators are the same, we can subtract the numerators directly: \[ \frac{31 - 18}{7} = \frac{13}{7} \] ### Step 3: Convert Back to Mixed Number (if needed) The result \( \frac{13}{7} \) can be converted back to a mixed number: - Divide 13 by 7, which gives 1 with a remainder of 6. - Thus, \( \frac{13}{7} \) can be written as: \[ 1\frac{6}{7} \] ### Final Answer The final answer is: \[ \frac{13}{7} \quad \text{or} \quad 1\frac{6}{7} \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate the sum: 9(3)/(7)+2(4)/(7)

Find the sum: 4(3)/(5)+2(7)/(8)

Find : a. 4 (5)/(13)- 3 (7)/(13) + 2 (8)/(13)

Evaluate: 5+(3)/(7)-(4-(2)/(9))

Evaluate : (i) (3)/(7)+(-4)/(9)-(-11)/(7)-(7)/(9)

Evaluate : (i) (3)/(7)+(-4)/(9)+(-11)/(7)+(7)/(9)

Find: (7)/(4) + ((3)/(4) + (5)/(8))

Find: d. 4 (4)/(7) xx 5 (3)/(5)

Evaluate: c. 2 (3)/(14) + 5 (2)/(7) - 4 (3)/(4)

Evaluate : (ii) ((4)/(7) a+ (3)/(4) b) ((4)/(7) a - (3)/(4) b)