Home
Class 6
MATHS
Find the following: 3/(18)-1/(6)...

Find the following:
`3/(18)-1/(6)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( \frac{3}{18} - \frac{1}{6} \), we will follow these steps: ### Step 1: Identify the fractions We have two fractions: \( \frac{3}{18} \) and \( \frac{1}{6} \). ### Step 2: Find the Least Common Multiple (LCM) To subtract these fractions, we need a common denominator. The denominators are 18 and 6. The LCM of 18 and 6 is 18. ### Step 3: Convert the fractions to have the same denominator The first fraction \( \frac{3}{18} \) already has the denominator of 18. The second fraction \( \frac{1}{6} \) needs to be converted: - To convert \( \frac{1}{6} \) to have a denominator of 18, we multiply both the numerator and the denominator by 3: \[ \frac{1 \times 3}{6 \times 3} = \frac{3}{18} \] ### Step 4: Rewrite the subtraction with the common denominator Now we can rewrite the expression: \[ \frac{3}{18} - \frac{3}{18} \] ### Step 5: Perform the subtraction Now, we subtract the numerators: \[ \frac{3 - 3}{18} = \frac{0}{18} \] ### Step 6: Simplify the result Since \( \frac{0}{18} = 0 \), the final answer is: \[ 0 \] ### Final Answer: The result of \( \frac{3}{18} - \frac{1}{6} \) is \( 0 \). ---
Promotional Banner

Similar Questions

Explore conceptually related problems

Simplify the following : (-18)div(-6)

Find the following sums : (i) 12 + 13 + 14 + …+ 37 (ii) 18^(2) + 19^(2) + 20 ^(2) +…+ 47^(2) (iii) 2^(3) + 4^(3) + 6^(3) +… + 18^(3)

A function f : RrarrR is defined as f(x) = x^(2) +2 , then evaluate each of the following : (i) f^(-1)(-6) (ii) f^(-1)(18)

Simplify the following : (-18)div6

Simplify the following : 18div(-6)

Evaluate the following: ([(1,3),( -1,-4))]+[(3 ,-2 ),(-1 ,1)]) [(1 ,3,5),( 2 ,4 ,6)]

Find the variance and standard deviation of the following data 5,12,3,18,6,8,2,10

Evaluate the following : (i) 1+.^(20)C_(1)+^(20)C_(2)+^(20)C_(3)+....+^(20)C_(19)+^(20)C_(20) (ii) ^(10)C_(1)+^(10)C_(2)+^(10)C_(3)+.....+^(10)C_(9) (iii)^(25)C_(1)+^(25)C_(3)+^(25)C_(5)+.....+^(25)C_(25) (iv) ^(18)C_(2)+^(18)C_(4)+^(18)C_(4)+^(18)C_(6)+....+^(18)C_(18)

Verify the following:(a) 18xx[7+(-3)]=[18xx7]+[18xx(-3)] (b) (-21)xx[(-4)+(-6)]=[(-21)xx(-4)]+[(-21)xx(-6)]

Simplify the following (i) (3a^4b^3)(18 a^3b^5) (ii) (3a^7b^6)/(18 a^6b^8) ((-2a^2)/(b^3))^3