Home
Class 6
MATHS
Evaluate the sum: 9(11)/(23)+12(13)/(2...

Evaluate the sum:
`9(11)/(23)+12(13)/(23)`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the sum \( \frac{9 \cdot 11}{23} + \frac{12 \cdot 13}{23} \), we will follow these steps: ### Step 1: Convert Mixed Fractions to Improper Fractions First, we need to convert the mixed fractions into improper fractions. For \( 9 \frac{11}{23} \): \[ 9 \frac{11}{23} = \frac{9 \cdot 23 + 11}{23} = \frac{207 + 11}{23} = \frac{218}{23} \] For \( 12 \frac{13}{23} \): \[ 12 \frac{13}{23} = \frac{12 \cdot 23 + 13}{23} = \frac{276 + 13}{23} = \frac{289}{23} \] ### Step 2: Add the Improper Fractions Now, we can add the two improper fractions: \[ \frac{218}{23} + \frac{289}{23} = \frac{218 + 289}{23} \] ### Step 3: Calculate the Numerator Now we need to calculate the sum of the numerators: \[ 218 + 289 = 507 \] ### Step 4: Write the Final Answer Now we can write the final answer as: \[ \frac{507}{23} \] ### Final Answer Thus, the evaluated sum is: \[ \frac{507}{23} \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate the sum: 12/(19)+11/(19)

Evaluate : 8-(-23)

Find the sum: 14/(16)+23/(28)

The 15th term of the series 2 1/2+1 7/(13)+1 1/9+(20)/(23)+.. is

Evaluate: 37-23-4

Evaluate: 9+[7-{11-(14-20)+2}-23]

Find the difference: 18/(23)-9/(23)

Evaluate: [23+(7-11)]+[(11-5)-(16+6)]

Find the sum to n terms of the series (1)/(1*3*5*7*9)+(1)/(3*5*7*9*11)+(1)/(5*7*9*11*13)+"......" . Also, find the sum to infinty terms.

Evaluate : |-23|-|-16|