Home
Class 6
MATHS
Insert ltorgt in the box. 3(41)/(45)s...

Insert `ltorgt` in the box.
`3(41)/(45)square3(10)/(45)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of comparing the two mixed numbers \(3 \frac{41}{45}\) and \(3 \frac{10}{45}\), we will follow these steps: ### Step 1: Convert the mixed numbers to improper fractions. To convert a mixed number to an improper fraction, we use the formula: \[ \text{Improper Fraction} = ( \text{Whole Number} \times \text{Denominator} + \text{Numerator} ) / \text{Denominator} \] For \(3 \frac{41}{45}\): \[ = \frac{3 \times 45 + 41}{45} = \frac{135 + 41}{45} = \frac{176}{45} \] For \(3 \frac{10}{45}\): \[ = \frac{3 \times 45 + 10}{45} = \frac{135 + 10}{45} = \frac{145}{45} \] ### Step 2: Compare the improper fractions. Now we have: - \(3 \frac{41}{45} = \frac{176}{45}\) - \(3 \frac{10}{45} = \frac{145}{45}\) Since both fractions have the same denominator (45), we can compare the numerators directly: - \(176\) (from \(3 \frac{41}{45}\)) - \(145\) (from \(3 \frac{10}{45}\)) ### Step 3: Determine which is greater. Since \(176 > 145\), we can conclude that: \[ \frac{176}{45} > \frac{145}{45} \] ### Step 4: Write the final comparison. Thus, we can insert the appropriate symbol in the box: \[ 3 \frac{41}{45} > 3 \frac{10}{45} \] ### Final Answer: The answer is: \[ 3 \frac{41}{45} > 3 \frac{10}{45} \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

Insert ltorgt in the box. 2(5)/(45)square2(2)/(25)

Insert ltorgt in the box. 4(9)/(44)square4(10)/(44)

Insert ltorgt in the box. 1(6)/(10)square1(5)/(10)

Insert ltorgt in the box. 15/(40)square10/(26)

Insert ltorgt in the box. 21/(48)square21/(50)

Insert ltorgt in the box. 10/(22)square10/(25)

Insert ltorgt in the box. 22/(44)square13/(23)

Insert '=' or 'ne' in the box. (12)/(25)square(30)/(43)

Insert ltorgt in the box. 28/(29)square19/(22)

Insert '=' or 'ne' in the box. (15)/(18)square(10)/(12)