Home
Class 6
MATHS
Insert ltorgt in the box. 1(6)/(10)sq...

Insert `ltorgt` in the box.
`1(6)/(10)square1(5)/(10)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of comparing the fractions \(1\frac{6}{10}\) and \(1\frac{5}{10}\), we will follow these steps: ### Step 1: Convert Mixed Numbers to Improper Fractions First, we need to convert both mixed numbers into improper fractions. For \(1\frac{6}{10}\): - Multiply the whole number (1) by the denominator (10): \[ 1 \times 10 = 10 \] - Add the numerator (6) to this result: \[ 10 + 6 = 16 \] - Therefore, \(1\frac{6}{10}\) can be written as: \[ \frac{16}{10} \] For \(1\frac{5}{10}\): - Multiply the whole number (1) by the denominator (10): \[ 1 \times 10 = 10 \] - Add the numerator (5) to this result: \[ 10 + 5 = 15 \] - Therefore, \(1\frac{5}{10}\) can be written as: \[ \frac{15}{10} \] ### Step 2: Compare the Improper Fractions Now we have the two improper fractions: - \( \frac{16}{10} \) - \( \frac{15}{10} \) Since the denominators are the same, we can directly compare the numerators: - \(16\) (from \( \frac{16}{10} \)) and \(15\) (from \( \frac{15}{10} \)). ### Step 3: Determine the Relationship Since \(16 > 15\), we can conclude that: \[ \frac{16}{10} > \frac{15}{10} \] This means: \[ 1\frac{6}{10} > 1\frac{5}{10} \] ### Step 4: Insert the Correct Symbol Thus, we can insert the symbol in the box: \[ 1\frac{6}{10} \, \text{(greater than)} \, 1\frac{5}{10} \] ### Final Answer The answer is: \[ 1\frac{6}{10} > 1\frac{5}{10} \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

Insert ltorgt in the box. 15/(40)square10/(26)

Insert ltorgt in the box. 2(5)/(45)square2(2)/(25)

Insert ltorgt in the box. 3(41)/(45)square3(10)/(45)

Insert ltorgt in the box. 10/(22)square10/(25)

Insert ltorgt in the box. 4(9)/(44)square4(10)/(44)

Insert ltorgt in the box. 21/(48)square21/(50)

Insert ltorgt in the box. 22/(44)square13/(23)

Insert ltorgt in the box. 28/(29)square19/(22)

Insert '=' or 'ne' in the box. (6)/(13)square(-7)/(15)

Insert '=' or 'ne' in the box. (5)/(9)square(15)/(16)