Home
Class 6
MATHS
Insert ltorgt in the box. 2(5)/(45)sq...

Insert `ltorgt` in the box.
`2(5)/(45)square2(2)/(25)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of comparing the two mixed numbers \(2 \frac{5}{45}\) and \(2 \frac{2}{25}\), we will follow these steps: ### Step 1: Convert the mixed numbers to improper fractions. 1. For \(2 \frac{5}{45}\): - Multiply the whole number (2) by the denominator (45): \[ 2 \times 45 = 90 \] - Add the numerator (5): \[ 90 + 5 = 95 \] - So, \(2 \frac{5}{45} = \frac{95}{45}\). 2. For \(2 \frac{2}{25}\): - Multiply the whole number (2) by the denominator (25): \[ 2 \times 25 = 50 \] - Add the numerator (2): \[ 50 + 2 = 52 \] - So, \(2 \frac{2}{25} = \frac{52}{25}\). ### Step 2: Simplify the fractions if possible. 1. The fraction \(\frac{95}{45}\) can be simplified: - Both 95 and 45 can be divided by 5: \[ \frac{95 \div 5}{45 \div 5} = \frac{19}{9} \] 2. The fraction \(\frac{52}{25}\) is already in simplest form. ### Step 3: Compare the two fractions \(\frac{19}{9}\) and \(\frac{52}{25}\). To compare these fractions, we can use cross-multiplication: 1. Cross-multiply: - Multiply the numerator of the first fraction by the denominator of the second: \[ 19 \times 25 = 475 \] - Multiply the numerator of the second fraction by the denominator of the first: \[ 52 \times 9 = 468 \] ### Step 4: Determine which fraction is greater. Now we compare the results of the cross-multiplication: - Since \(475 > 468\), we conclude that: \[ \frac{19}{9} > \frac{52}{25} \] ### Final Conclusion: Thus, we can say: \[ 2 \frac{5}{45} > 2 \frac{2}{25} \] ### Summary: The answer to the question is: \[ \text{Insert } > \text{ in the box.} \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

Insert ltorgt in the box. 3(41)/(45)square3(10)/(45)

Insert ltorgt in the box. 22/(44)square13/(23)

Insert ltorgt in the box. 15/(40)square10/(26)

Insert ltorgt in the box. 21/(48)square21/(50)

Insert ltorgt in the box. 4(9)/(44)square4(10)/(44)

Insert ltorgt in the box. 1(6)/(10)square1(5)/(10)

Insert ltorgt in the box. 28/(29)square19/(22)

Insert ltorgt in the box. 10/(22)square10/(25)

Insert '=' or 'ne' in the box. (15)/(18)square(10)/(12)

Insert '=' or 'ne' in the box. (5)/(9)square(15)/(16)