Home
Class 6
MATHS
Find the sum: 3(1)/(2)+7...

Find the sum:
`3(1)/(2)+7`

Text Solution

AI Generated Solution

The correct Answer is:
To find the sum of \(3 \frac{1}{2} + 7\), we can follow these steps: ### Step 1: Convert the mixed number to an improper fraction First, we convert \(3 \frac{1}{2}\) into an improper fraction. To do this: - Multiply the whole number (3) by the denominator (2): \[ 3 \times 2 = 6 \] - Add the numerator (1) to this result: \[ 6 + 1 = 7 \] - Therefore, \(3 \frac{1}{2}\) can be written as: \[ \frac{7}{2} \] ### Step 2: Write the second number as a fraction Next, we need to express \(7\) as a fraction with the same denominator (2): \[ 7 = \frac{7 \times 2}{2} = \frac{14}{2} \] ### Step 3: Add the two fractions Now we can add the two fractions: \[ \frac{7}{2} + \frac{14}{2} = \frac{7 + 14}{2} = \frac{21}{2} \] ### Final Answer Thus, the sum of \(3 \frac{1}{2} + 7\) is: \[ \frac{21}{2} \] ---
Doubtnut Promotions Banner Mobile Dark
|

Similar Questions

Explore conceptually related problems

Find the sum 3(1)/(5)+4(3)/(5)+7(2)/(5)

Find the sum (1^2)/2-(3^2)/(2^2)+(5^2)/(2^3)-(7^2)/(2^4)+....oodot

Find the sum (1^2)/(2)+(3^2)/(2^2)+(5^2)/(2^3)+(7^2)/(2^4)+….oo

Find the sum: 4(3)/(5)+2(7)/(8)

Find the sum: 3(27)/(30)+2(7)/(12)

Re- arrange suitably and find the sum: 5/3+(11)/2+\ (-9)/4+\ (-8)/3+\ (-7)/2

Find the sum (1^4)/(1xx3)+(2^4)/(3xx5)+(3^4)/(5xx7)+......+(n^4)/((2n-1)(2n+1))

Find the sum 5^(2)+ 6^(2) + 7^(2) + ... + 20^(2) .

Find the sum, sum_(k=1) ^(20) (1+2+3+.....+k)

Find the sum: (i) 1+3+5+7+\ ....\ +\ 199 (ii) 7+10 1/2+14+\ .... +84 (iii) 34+32+30+\ .... \ +10