Home
Class 6
MATHS
Find the value of the following. 3x+y...

Find the value of the following.
`3x+y-z` when x = 0, y = 1, z = -1

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of the expression \(3x + y - z\) when \(x = 0\), \(y = 1\), and \(z = -1\), we can follow these steps: ### Step 1: Substitute the values of x, y, and z into the expression We start with the expression: \[ 3x + y - z \] Now, we will substitute the given values: - \(x = 0\) - \(y = 1\) - \(z = -1\) Substituting these values into the expression gives us: \[ 3(0) + 1 - (-1) \] ### Step 2: Calculate \(3x\) Now, we calculate \(3x\): \[ 3(0) = 0 \] ### Step 3: Substitute and simplify the expression Now we substitute \(3x\) back into the expression: \[ 0 + 1 - (-1) \] ### Step 4: Simplify the subtraction of a negative number Subtracting a negative number is the same as adding a positive number: \[ 0 + 1 + 1 \] ### Step 5: Add the numbers together Now, we add the numbers: \[ 0 + 1 + 1 = 2 \] ### Final Answer Thus, the value of the expression \(3x + y - z\) when \(x = 0\), \(y = 1\), and \(z = -1\) is: \[ \boxed{2} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the values of x, y, z if the matrix A=[[0, 2y, z],[ x, y,-z],[ x,-y, z]] satisfy the equation A^(prime)A=I .

Find the angle between the planes 3x+y+2z=1 and 2x-y+z+3 = 0 .

Find the values of x, y and z from the following equations:(i) [[4, 3],[x,5]]=[[y, z],[1, 5]] (ii) [[x+y,3],[ 5+z, x y]]=[[6, 3],[ 5 ,8]] (iii) [[x+y+z],[ x+z],[ y+z]]=[[9],[ 5],[ 7]]

If x=1,\ y=-2\ a n d\ z=3, find the values of each of the following algebraic expressions: (i) x^3+y^3+z^3-3x y z (ii) 3x y^4-15 x^2y+4z

Find the value of 4x^2+y^2+25 z^2+4x y-10 y z-20 z x when x=4,\ y=3 and z=2

Find the value of 4x^2+y^2+25 z^2+4x y-10 y z-20 z x when x=4,y=3 and z=2.

find the values of x,y and zfrom the following equations : (i) [{:(4,3),(x,5):}]=[{:(y,z),(1,5):}] (ii) [{:(x+y,2),(5+z,xy):}]=[{:(6,2),(5,8):}] (iii) [{:(x+y+z),(x+z),(y+z):}]=[{:(9),(5),(7):}]

Multiply the monomial by the binomial and find the value of each for x=-1, y=0. 25\ a n d\ z=0. 05 : (i) 15 y^2(2-3x) (ii) -3x(y^2+z^2) (iii) z^2(x-y)

Find the angle between the planes 2x+y+z-1=0 and 3x+y+2z-2=0 ,

If x gt y gt z gt 0 , then find the value of "cot"^(-1) (xy + 1)/(x - y) + cot^(-1).(yz + 1)/(y - z) + cot^(-1).(zx + 1)/(z - x)