Home
Class 7
MATHS
5 (2)/(9) - 2(4)/(9) - 1(1)/(9)...

`5 (2)/(9) - 2(4)/(9) - 1(1)/(9)`

A

`= 1 (1)/(3)`

B

`= 1 (2)/(7)`

C

`= 1 (2)/(3)`

D

`= 1 (2)/(11)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \(5 \frac{2}{9} - 2 \frac{4}{9} - 1 \frac{1}{9}\), we can follow these steps: ### Step 1: Convert Mixed Numbers to Improper Fractions First, we need to convert each mixed number into an improper fraction. 1. For \(5 \frac{2}{9}\): \[ 5 \frac{2}{9} = \frac{5 \times 9 + 2}{9} = \frac{45 + 2}{9} = \frac{47}{9} \] 2. For \(2 \frac{4}{9}\): \[ 2 \frac{4}{9} = \frac{2 \times 9 + 4}{9} = \frac{18 + 4}{9} = \frac{22}{9} \] 3. For \(1 \frac{1}{9}\): \[ 1 \frac{1}{9} = \frac{1 \times 9 + 1}{9} = \frac{9 + 1}{9} = \frac{10}{9} \] ### Step 2: Rewrite the Expression Now we can rewrite the original expression using the improper fractions: \[ \frac{47}{9} - \frac{22}{9} - \frac{10}{9} \] ### Step 3: Combine the Fractions Since all fractions have the same denominator, we can combine them by subtracting the numerators: \[ \frac{47 - 22 - 10}{9} \] ### Step 4: Perform the Subtraction Now we perform the subtraction in the numerator: 1. First, calculate \(47 - 22\): \[ 47 - 22 = 25 \] 2. Then subtract \(10\) from \(25\): \[ 25 - 10 = 15 \] So, we have: \[ \frac{15}{9} \] ### Step 5: Simplify the Fraction Now, we can simplify \(\frac{15}{9}\): 1. Both the numerator and the denominator can be divided by \(3\): \[ \frac{15 \div 3}{9 \div 3} = \frac{5}{3} \] ### Final Answer Thus, the final answer is: \[ \frac{5}{3} \] ---
Promotional Banner

Topper's Solved these Questions

  • FRACTIONS

    ICSE|Exercise Try This|37 Videos
  • FRACTIONS

    ICSE|Exercise Warm-up Exercise|24 Videos
  • FRACTIONS

    ICSE|Exercise EXERCISE 3B|30 Videos
  • EXPONENTS AND POWERS

    ICSE|Exercise Unit practice paper -1|7 Videos
  • FUNDAMENTAL GEOMETRICAL CONCEPTS

    ICSE|Exercise Exercise |14 Videos

Similar Questions

Explore conceptually related problems

Find: (-2)/(9)-(4)/(9)

Prove that cos ""(pi)/(9) cos ""( 2pi)/(9) cos "" (3pi)/(9) cos ""(4pi)/(9) = (1)/(2 ^(4)).

Show that : "tan"^(-1)(1)/(4) +"tan"^(-1)(2)/(9) = (1)/(2) "cos"^(-1)(3)/(5) .

Prove that : tan^(-1).(1)/(4)+tan^(-1).(2)/(9)=(1)/(2)sin^(-1).(4)/(5)

An ellipse has point (1,-1)a n d(2,-1) as its foci and x+y-5=0 as one of its tangents. Then the point where this line touches the ellipse is (a) ((32)/9,(22)/9) (b) ((23)/9,2/9) (c) ((34)/9,(11)/9) (d) none of these

Factorise : 9a^(2) + (1)/(9a^(2)) - 2-12a + (4)/(3a)

When simplified (-1/(27))^(-2/3) is (a) 9 (b) -9 (c) 1/9 (d) -1/9

[{(-1/3)^2}^(-2)]^(-1) = (a) 1/(81) (b) 1/9 (c) -1/(81) (d) -1/9

Evaluate : ((1)/(4)) ^(-2) - 3 (32)^((2)/(5)) xx ( 7) ^(0) +((9)/(16))^(-(1)/(2))

Which of the following fraction is the smallest? 5/9,4/9,2/9,(11)/9 (a) (11)/9 (b) 4/9 (c) 5/9 (d) 2/9