Home
Class 7
MATHS
2 (5)/(4) - 4 (7)/(6) + 3 (1)/(3)...

`2 (5)/(4) - 4 (7)/(6) + 3 (1)/(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \(2 \frac{5}{4} - 4 \frac{7}{6} + 3 \frac{1}{3}\), we will follow these steps: ### Step 1: Convert Mixed Numbers to Improper Fractions First, we need to convert each mixed number into an improper fraction. 1. **For \(2 \frac{5}{4}\)**: \[ 2 \frac{5}{4} = \frac{2 \times 4 + 5}{4} = \frac{8 + 5}{4} = \frac{13}{4} \] 2. **For \(4 \frac{7}{6}\)**: \[ 4 \frac{7}{6} = \frac{4 \times 6 + 7}{6} = \frac{24 + 7}{6} = \frac{31}{6} \] 3. **For \(3 \frac{1}{3}\)**: \[ 3 \frac{1}{3} = \frac{3 \times 3 + 1}{3} = \frac{9 + 1}{3} = \frac{10}{3} \] ### Step 2: Rewrite the Expression Now we can rewrite the original expression using the improper fractions: \[ \frac{13}{4} - \frac{31}{6} + \frac{10}{3} \] ### Step 3: Find the Least Common Multiple (LCM) Next, we need to find the LCM of the denominators \(4\), \(6\), and \(3\). - The LCM of \(4\), \(6\), and \(3\) is \(12\). ### Step 4: Convert Each Fraction to Have the Same Denominator Now we will convert each fraction to have a denominator of \(12\). 1. **For \(\frac{13}{4}\)**: \[ \frac{13}{4} = \frac{13 \times 3}{4 \times 3} = \frac{39}{12} \] 2. **For \(\frac{31}{6}\)**: \[ \frac{31}{6} = \frac{31 \times 2}{6 \times 2} = \frac{62}{12} \] 3. **For \(\frac{10}{3}\)**: \[ \frac{10}{3} = \frac{10 \times 4}{3 \times 4} = \frac{40}{12} \] ### Step 5: Combine the Fractions Now we can combine the fractions: \[ \frac{39}{12} - \frac{62}{12} + \frac{40}{12} = \frac{39 - 62 + 40}{12} \] ### Step 6: Simplify the Numerator Now simplify the numerator: \[ 39 - 62 + 40 = 39 - 62 = -23 \quad \text{and then} \quad -23 + 40 = 17 \] So we have: \[ \frac{17}{12} \] ### Final Answer Thus, the simplified result of the expression \(2 \frac{5}{4} - 4 \frac{7}{6} + 3 \frac{1}{3}\) is: \[ \frac{17}{12} \] ---
Promotional Banner

Topper's Solved these Questions

  • FRACTIONS

    ICSE|Exercise Try This|37 Videos
  • FRACTIONS

    ICSE|Exercise Warm-up Exercise|24 Videos
  • FRACTIONS

    ICSE|Exercise EXERCISE 3B|30 Videos
  • EXPONENTS AND POWERS

    ICSE|Exercise Unit practice paper -1|7 Videos
  • FUNDAMENTAL GEOMETRICAL CONCEPTS

    ICSE|Exercise Exercise |14 Videos

Similar Questions

Explore conceptually related problems

If x = (1)/(1.2) + (1)/(3.4) + (1)/(5.6) …….oo, and y = 1 - (1)/(2.3) - (1)/(4.5) - (1)/(6.7)…….oo , then

Solve (a) 2/3 + 1/7 (b) 3/10 + 7/15 (c) 4/9 + 2/7 (d) 5/7 + 1/3 (e) 2/5 + 1/6 (f) 4/5 + 2/3 (g) (3/4) (1/3) (h) (5/6) (1/3) (1) 2/3 + 3/4 + 1/2 (1) 1/2 + 1/3 = 1/6 (k) (1) 1/3 + (3) 2/3 (1) (4) 2/3 +(3) 1/4 (m) ((16)/5))(7/5)

Find : (i) 7/3 -: 2 (ii) 4/9 -: 5 (iii) 6/13 -: 7 (iv) (4) 1/3 -: 3 (v) (3)1/2 -: 4 (vi) (4) 3/7 -: 7

The sum of the series 1 + (1)/(3^(2)) + (1 *4)/(1*2) (1)/(3^(4))+( 1 * 4 * 7)/(1 *2*3)(1)/(3^(6)) + ..., is (a) ((3)/(2))^((1)/(3)) (b) ((5)/(4))^((1)/(3)) (c) ((3)/(2))^((1)/(6)) (d) None of these

Find : (-7)/4 + 5/3 + (-5)/6 + 1/3 + (-1)/2

Choose the correct option 5/4-7/6-(-2)/3=\ (a) 3/4 (b) -3/4 (c) (-7)/(12) (d) 7/(12)

Simplify : a. [(3^(3))xx3^(4)]-:3^(4) b. 18^(6)-:3^(12) c. [(5^(6))^(9)xx(5^(15))^(5)]-[(5^(13))^(5)xx(5^(4))^(16)] d. (3^(5)xx10^(5)xx25)-:(5^(7)xx6^(5)) e. ((2)/(b))^(18)xxb^(12)xx(3^(4))^(3) f. [(2^(4))^(2)xx2^(12)]-:4^(2) g. 12^(8)-:3^(6) h. [(7^(7))^(8)xx(7^(9))^(5)]-[(7^(11))^(6)xx(7^(7))^(5)] i. (25^(2)xxp^(4)xxq^(8))-:(5^(3)xxp^(4)xxq^(7)) j. ((a)/(3))^(24)xx2^(8)xx(3^(6))^(4)

Evaluate int ((8x+13)/sqrt(4x+7)) dx (A) 1/3 (4x+7)^(3/2) - 1/2 (4x+7)^(1/2) + c (B) 1/6 (4x+7)^(5/2) - 2/3 (4x+7)^(3/2) + c (C) 1/3 (4x+7)^(5/2) - 1/2 (4x+7)^(3/2) + c (D) (4x+7)^(3/2) - 1/2 (4x+7)^(1/2) + c

The point of intersection of the lines (x-5)/3=(y-7)/(-1)=(z+2)/1 and (x+3)/(-36)=(y-3)/2=(z-6)/4 is (A) (21 ,5/3,(10)/3) (B) (2,10 ,4) (C) (-3,3,6) (D) (5,7,-2)

(1)/(2)((1)/(5)+(1)/(7))-(1)/(4)((1)/(5^(2))+(1)/(7^(2)))+(1)/(6)((1)/(5^(3))+(1)/(7^(3)))-….oo=