Home
Class 7
MATHS
Evaluate: b. 5 (6)/(7) - 2 (5)/(6) - 1 (...

Evaluate: b. `5 (6)/(7) - 2 (5)/(6) - 1 (2)/(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the expression \(5 \frac{6}{7} - 2 \frac{5}{6} - 1 \frac{2}{3}\), we will follow these steps: ### Step 1: Convert Mixed Numbers to Improper Fractions First, we need to convert each mixed number into an improper fraction. 1. For \(5 \frac{6}{7}\): \[ 5 \frac{6}{7} = \frac{5 \times 7 + 6}{7} = \frac{35 + 6}{7} = \frac{41}{7} \] 2. For \(2 \frac{5}{6}\): \[ 2 \frac{5}{6} = \frac{2 \times 6 + 5}{6} = \frac{12 + 5}{6} = \frac{17}{6} \] 3. For \(1 \frac{2}{3}\): \[ 1 \frac{2}{3} = \frac{1 \times 3 + 2}{3} = \frac{3 + 2}{3} = \frac{5}{3} \] Now we rewrite the expression: \[ \frac{41}{7} - \frac{17}{6} - \frac{5}{3} \] ### Step 2: Find the Least Common Multiple (LCM) Next, we need to find the LCM of the denominators \(7\), \(6\), and \(3\). - The prime factorization of \(7\) is \(7^1\). - The prime factorization of \(6\) is \(2^1 \times 3^1\). - The prime factorization of \(3\) is \(3^1\). The LCM is calculated as follows: \[ \text{LCM} = 7^1 \times 2^1 \times 3^1 = 42 \] ### Step 3: Convert Each Fraction to Have the Same Denominator Now we convert each fraction to have the denominator of \(42\). 1. For \(\frac{41}{7}\): \[ \frac{41}{7} = \frac{41 \times 6}{7 \times 6} = \frac{246}{42} \] 2. For \(\frac{17}{6}\): \[ \frac{17}{6} = \frac{17 \times 7}{6 \times 7} = \frac{119}{42} \] 3. For \(\frac{5}{3}\): \[ \frac{5}{3} = \frac{5 \times 14}{3 \times 14} = \frac{70}{42} \] ### Step 4: Combine the Fractions Now we can combine the fractions: \[ \frac{246}{42} - \frac{119}{42} - \frac{70}{42} = \frac{246 - 119 - 70}{42} \] Calculating the numerator: \[ 246 - 119 = 127 \] \[ 127 - 70 = 57 \] So we have: \[ \frac{57}{42} \] ### Step 5: Simplify the Fraction Now we simplify \(\frac{57}{42}\): - The greatest common divisor (GCD) of \(57\) and \(42\) is \(3\). - Dividing both the numerator and the denominator by \(3\): \[ \frac{57 \div 3}{42 \div 3} = \frac{19}{14} \] ### Final Answer Thus, the final answer is: \[ \frac{19}{14} \text{ or } 1 \frac{5}{14} \] ---
Promotional Banner

Topper's Solved these Questions

  • FRACTIONS

    ICSE|Exercise Exercise 2.2|26 Videos
  • FRACTIONS

    ICSE|Exercise Exercise 2.3|25 Videos
  • FRACTIONS

    ICSE|Exercise Warm-up Exercise|24 Videos
  • EXPONENTS AND POWERS

    ICSE|Exercise Unit practice paper -1|7 Videos
  • FUNDAMENTAL GEOMETRICAL CONCEPTS

    ICSE|Exercise Exercise |14 Videos

Similar Questions

Explore conceptually related problems

Find : b. 7 (5)/(6) + 4 (2)/(5) - 6 (2)/(15)

Evaluate: (2)/(7) of ((1)/(10) div 6 (1)/(5) )

Evaluate: a. 5xx(7+6) b. (12+6)-:3-4 c. (5+7)xx(6-2) d. 9-:(8-5)-:3xx5

Evaluate : a. (-1)^(11) b. (-3)^(2)xx(5)^(3) c. 6^(2)xx3^(3) d. (-2)^(3)xx(-5)^(2) e. (-1)^(7)xx2 f. (-1)^(4)xx(-1)^(5) g. 4^(3)xx3^(4) h. (-2)^(5)xx5^(3) i. (-4)^(3)xx(-6)^(3) j. (-1)^(33)xx(-3)^(1) k. ((-1)/(6))^(2) l. ((2)/(11))^(3)

Evaluate : a. (-9)^(6)-:3^(6) b. 15^(5)-:3^(5)xx5^(2) c. (7^(0)+12^(0))xx6^(0) d. (23^(0)+32^(0))-:22^(0)

Evaluate: (i) 2/(-3) + -4/9 , (ii) =1/2 + -3/4 , (iii) 7/-9 + -5/6 (iv) 2 + -3/4 , (v) 3 + -5/6 , (vi) -4 + 2/3

Find the value of: (3)/(2)times((-7)/(6))-(5)/(6)times(3)/(2)+(11)/(6)times(3)/(2)

Find the mode in each of the following data collection. 8,6,7,6,5,4, (1)/(2), 7 (1)/(2), 6 (1)/(2), 8 (1)/(2), 10,7,5,5(1)/(2), 8,9 7,5,6,8 (1)/(2),6

Find : (-7)/4 + 5/3 + (-5)/6 + 1/3 + (-1)/2

A B C is an isosceles triangle. If the coordinates of the base are B(1,3) and C(-2,7) , the coordinates of vertex A can be (1,6) (b) (-1/2,5) (5/6,6) (d) none of these