Home
Class 7
MATHS
Evaluate: f. 12 (1)/(2) -3 (9)/(14) + 4 ...

Evaluate: f. `12 (1)/(2) -3 (9)/(14) + 4 (5)/(7)`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the expression \( 12 \frac{1}{2} - 3 \frac{9}{14} + 4 \frac{5}{7} \), we will follow these steps: ### Step 1: Convert Mixed Numbers to Improper Fractions First, we convert each mixed number into an improper fraction. 1. \( 12 \frac{1}{2} = \frac{12 \times 2 + 1}{2} = \frac{24 + 1}{2} = \frac{25}{2} \) 2. \( 3 \frac{9}{14} = \frac{3 \times 14 + 9}{14} = \frac{42 + 9}{14} = \frac{51}{14} \) 3. \( 4 \frac{5}{7} = \frac{4 \times 7 + 5}{7} = \frac{28 + 5}{7} = \frac{33}{7} \) Now our expression looks like this: \[ \frac{25}{2} - \frac{51}{14} + \frac{33}{7} \] ### Step 2: Find a Common Denominator The denominators are 2, 14, and 7. The least common multiple (LCM) of these numbers is 14. ### Step 3: Convert Each Fraction to Have the Common Denominator Now we convert each fraction to have a denominator of 14. 1. For \( \frac{25}{2} \): \[ \frac{25}{2} = \frac{25 \times 7}{2 \times 7} = \frac{175}{14} \] 2. For \( \frac{51}{14} \), it remains the same: \[ \frac{51}{14} = \frac{51}{14} \] 3. For \( \frac{33}{7} \): \[ \frac{33}{7} = \frac{33 \times 2}{7 \times 2} = \frac{66}{14} \] Now our expression is: \[ \frac{175}{14} - \frac{51}{14} + \frac{66}{14} \] ### Step 4: Combine the Fractions Now we can combine the fractions since they have the same denominator: \[ \frac{175 - 51 + 66}{14} \] Calculating the numerator: \[ 175 - 51 = 124 \] \[ 124 + 66 = 190 \] So we have: \[ \frac{190}{14} \] ### Step 5: Simplify the Fraction Now we simplify \( \frac{190}{14} \): Both 190 and 14 can be divided by 2: \[ \frac{190 \div 2}{14 \div 2} = \frac{95}{7} \] ### Final Answer Thus, the final answer is: \[ \frac{95}{7} \] ---
Promotional Banner

Topper's Solved these Questions

  • FRACTIONS

    ICSE|Exercise Exercise 2.2|26 Videos
  • FRACTIONS

    ICSE|Exercise Exercise 2.3|25 Videos
  • FRACTIONS

    ICSE|Exercise Warm-up Exercise|24 Videos
  • EXPONENTS AND POWERS

    ICSE|Exercise Unit practice paper -1|7 Videos
  • FUNDAMENTAL GEOMETRICAL CONCEPTS

    ICSE|Exercise Exercise |14 Videos

Similar Questions

Explore conceptually related problems

Evaluate: c. 2 (3)/(14) + 5 (2)/(7) - 4 (3)/(4)

Evaluate: 5+(3)/(7)-(4-(2)/(9))

Evaluate : (-12)/5+(-7)/(20)+3/(14)+1/7+(-1)/(10)

Evaluate: 9-(13)/(7)-((2)/(7)-(12)/(5))

Evaluate : ((1)/(4)) ^(-2) - 3 (32)^((2)/(5)) xx ( 7) ^(0) +((9)/(16))^(-(1)/(2))

Evaluate : (i) (12!)/(10!) (ii) (14!)/(10!5!) (iii) (1)/(4!)+(1)/(5!)+(1)/(6!)+(1)/(7!)

Evaluate the difference: 5(2)/(7)-4(1)/(9)

Evaluate: (i) 2/(-3) + -4/9 , (ii) =1/2 + -3/4 , (iii) 7/-9 + -5/6 (iv) 2 + -3/4 , (v) 3 + -5/6 , (vi) -4 + 2/3

1/((2 1/3))+1/((1 3/4)) is equal to (a) 7/(14) (b) (12)/(49) (c) 4 1/(12) (d) None of these

In each of the following, find an equivalent form of the rational number having a common denominator: (i) 3/4\ a n d5/(12) (ii) 2/3,7/6\ a n d(11)/(12) (iii) 5/7,3/8,9/(14)\ a n d(20)/(21)