Home
Class 7
MATHS
Evaluate: g. 5 (1)/(3) xx 8 (1)/(4) xx 2...

Evaluate: g. `5 (1)/(3) xx 8 (1)/(4) xx 2 (3)/(5)`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the expression \( 5 \frac{1}{3} \times 8 \frac{1}{4} \times 2 \frac{3}{5} \), we will follow these steps: ### Step 1: Convert Mixed Numbers to Improper Fractions 1. Convert \( 5 \frac{1}{3} \) to an improper fraction: \[ 5 \frac{1}{3} = \frac{5 \times 3 + 1}{3} = \frac{15 + 1}{3} = \frac{16}{3} \] 2. Convert \( 8 \frac{1}{4} \) to an improper fraction: \[ 8 \frac{1}{4} = \frac{8 \times 4 + 1}{4} = \frac{32 + 1}{4} = \frac{33}{4} \] 3. Convert \( 2 \frac{3}{5} \) to an improper fraction: \[ 2 \frac{3}{5} = \frac{2 \times 5 + 3}{5} = \frac{10 + 3}{5} = \frac{13}{5} \] ### Step 2: Multiply the Improper Fractions Now we multiply the improper fractions: \[ \frac{16}{3} \times \frac{33}{4} \times \frac{13}{5} \] ### Step 3: Multiply the Numerators and Denominators 1. Multiply the numerators: \[ 16 \times 33 \times 13 \] 2. Multiply the denominators: \[ 3 \times 4 \times 5 \] ### Step 4: Calculate the Denominator Calculating the denominator: \[ 3 \times 4 = 12 \] \[ 12 \times 5 = 60 \] ### Step 5: Calculate the Numerator Calculating the numerator: 1. First, calculate \( 16 \times 33 \): \[ 16 \times 33 = 528 \] 2. Then multiply by 13: \[ 528 \times 13 \] - \( 528 \times 10 = 5280 \) - \( 528 \times 3 = 1584 \) - Adding these together: \[ 5280 + 1584 = 6864 \] ### Step 6: Form the Final Fraction Now we have: \[ \frac{6864}{60} \] ### Step 7: Simplify the Fraction To simplify \( \frac{6864}{60} \), we can divide both the numerator and the denominator by their greatest common divisor (GCD). The GCD of 6864 and 60 is 12. \[ \frac{6864 \div 12}{60 \div 12} = \frac{572}{5} \] ### Final Answer Thus, the final answer is: \[ \frac{572}{5} \] ---
Promotional Banner

Topper's Solved these Questions

  • FRACTIONS

    ICSE|Exercise Exercise 2.3|25 Videos
  • FRACTIONS

    ICSE|Exercise Revision Exercise|44 Videos
  • FRACTIONS

    ICSE|Exercise Exercise 2.1|14 Videos
  • EXPONENTS AND POWERS

    ICSE|Exercise Unit practice paper -1|7 Videos
  • FUNDAMENTAL GEOMETRICAL CONCEPTS

    ICSE|Exercise Exercise |14 Videos

Similar Questions

Explore conceptually related problems

Evaluate: f. 2 (1)/(3) xx 1 (5)/(28)

Evaluate: c. 5 (1)/(4) xx 3 (5)/(6) + 1 (3)/(5) div 5 (1)/(3)

Evaluate: b. (3)/(4) of (4 (1)/(5) xx (10)/(7))

Evaluate : (i) ((2)/(-3)xx(5)/(4))+((5)/(9)xx(3)/(-10))

Evaluate: |(1)/(3)-(3)/(5)|+|(2)/(9)xx(3)/(4)|-|(5)/(6)-(2)/(3)|

Evaluate: sqrt(( 1)/(4)) + (0.01) ^(-(1)/(2)) xx (5) - (27)^((2)/(3))

Evaluate : a. (-1)^(11) b. (-3)^(2)xx(5)^(3) c. 6^(2)xx3^(3) d. (-2)^(3)xx(-5)^(2) e. (-1)^(7)xx2 f. (-1)^(4)xx(-1)^(5) g. 4^(3)xx3^(4) h. (-2)^(5)xx5^(3) i. (-4)^(3)xx(-6)^(3) j. (-1)^(33)xx(-3)^(1) k. ((-1)/(6))^(2) l. ((2)/(11))^(3)

Evaluate : ((1)/(4)) ^(-2) - 3 (32)^((2)/(5)) xx ( 7) ^(0) +((9)/(16))^(-(1)/(2))

Evaluate : [(1)/(4)]^(-2)-3(8)^((2)/(3)) xx 4^(0) + [(9)/(16)]^(-(1)/(2))

Find: -3(3)/(4)xx5(1)/(3)