Home
Class 7
MATHS
Find : b. 7 (5)/(6) + 4 (2)/(5) - 6 (...

Find :
b. `7 (5)/(6) + 4 (2)/(5) - 6 (2)/(15)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( 7 \frac{5}{6} + 4 \frac{2}{5} - 6 \frac{2}{15} \), we will follow these steps: ### Step 1: Convert Mixed Numbers to Improper Fractions First, we convert the mixed numbers into improper fractions. 1. For \( 7 \frac{5}{6} \): \[ 7 \frac{5}{6} = \frac{(7 \times 6) + 5}{6} = \frac{42 + 5}{6} = \frac{47}{6} \] 2. For \( 4 \frac{2}{5} \): \[ 4 \frac{2}{5} = \frac{(4 \times 5) + 2}{5} = \frac{20 + 2}{5} = \frac{22}{5} \] 3. For \( 6 \frac{2}{15} \): \[ 6 \frac{2}{15} = \frac{(6 \times 15) + 2}{15} = \frac{90 + 2}{15} = \frac{92}{15} \] ### Step 2: Rewrite the Expression Now we can rewrite the expression using the improper fractions: \[ \frac{47}{6} + \frac{22}{5} - \frac{92}{15} \] ### Step 3: Find a Common Denominator The denominators are 6, 5, and 15. The least common multiple (LCM) of these numbers is 30. ### Step 4: Convert Each Fraction to Have the Common Denominator 1. Convert \( \frac{47}{6} \) to have a denominator of 30: \[ \frac{47}{6} = \frac{47 \times 5}{6 \times 5} = \frac{235}{30} \] 2. Convert \( \frac{22}{5} \) to have a denominator of 30: \[ \frac{22}{5} = \frac{22 \times 6}{5 \times 6} = \frac{132}{30} \] 3. Convert \( \frac{92}{15} \) to have a denominator of 30: \[ \frac{92}{15} = \frac{92 \times 2}{15 \times 2} = \frac{184}{30} \] ### Step 5: Rewrite the Expression with the Common Denominator Now the expression becomes: \[ \frac{235}{30} + \frac{132}{30} - \frac{184}{30} \] ### Step 6: Combine the Fractions Since the denominators are the same, we can combine the numerators: \[ \frac{235 + 132 - 184}{30} = \frac{183}{30} \] ### Step 7: Simplify the Result Now we simplify \( \frac{183}{30} \): 1. Divide both the numerator and denominator by their greatest common divisor (GCD), which is 3: \[ \frac{183 \div 3}{30 \div 3} = \frac{61}{10} \] ### Step 8: Convert Back to a Mixed Number Convert \( \frac{61}{10} \) back to a mixed number: \[ \frac{61}{10} = 6 \frac{1}{10} \] ### Final Answer Thus, the final answer is: \[ 6 \frac{1}{10} \] ---
Promotional Banner

Topper's Solved these Questions

  • FRACTIONS

    ICSE|Exercise Challenge|1 Videos
  • FRACTIONS

    ICSE|Exercise Exercise 2.3|25 Videos
  • EXPONENTS AND POWERS

    ICSE|Exercise Unit practice paper -1|7 Videos
  • FUNDAMENTAL GEOMETRICAL CONCEPTS

    ICSE|Exercise Exercise |14 Videos

Similar Questions

Explore conceptually related problems

Find: b. 20 (5)/(6) div 15

Evaluate: b. 5 (6)/(7) - 2 (5)/(6) - 1 (2)/(3)

Find: 2(3)/(4)+5(5)/(6)

Evaluate: b. ((6)/(7) xx (35)/(48)) + ((5)/(6) div (15)/(16))

Evaluate: (5)/(4)-(7)/(6)-(-(2)/9)

Find the mode in each of the following data collection. 8,6,7,6,5,4, (1)/(2), 7 (1)/(2), 6 (1)/(2), 8 (1)/(2), 10,7,5,5(1)/(2), 8,9 7,5,6,8 (1)/(2),6

Evaluate : (-5xx(2)/(15))-(-6xx(2)/(9))

Find A+B if A = [(2,5),(3,6)] and B = [ (7,9),(6,5)]

Simplify: a. (2^(3))^(6) b. (3^(4))^(7) c. (10^(15))^(30) d. (6^(12))/(9^(12)) e. (16^(5))/(6^(5))

Let A = {1, 2, 5, 7}, B = {3, 4, 5, 6, 7} Let f : A rarr B be defined by f(1) = 3, f(2) = 4,f(2) = 6, f(5) = 5, f(7) = 5. Check whether f : A rarr B is a function or not.