Home
Class 7
MATHS
Evaluate: 0.05 xx 505.050...

Evaluate:
`0.05 xx 505.050`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate \( 0.05 \times 505.050 \), we will follow these steps: ### Step 1: Remove the Decimal Points First, we will remove the decimal points from both numbers to make the multiplication easier. - \( 0.05 \) can be written as \( 5 \) (after moving the decimal point two places to the right). - \( 505.050 \) can be written as \( 505050 \) (after moving the decimal point three places to the right). ### Step 2: Multiply the Whole Numbers Now, we will multiply the two whole numbers: \[ 5 \times 505050 \] Let's perform the multiplication: 1. \( 5 \times 0 = 0 \) 2. \( 5 \times 5 = 25 \) (write down 5 and carry over 2) 3. \( 5 \times 0 = 0 \) (add the carry over 2, so it becomes 2) 4. \( 5 \times 5 = 25 \) (write down 5 and carry over 2) 5. \( 5 \times 0 = 0 \) (add the carry over 2, so it becomes 2) 6. \( 5 \times 5 = 25 \) (write down 25) So, the result of the multiplication is: \[ 5 \times 505050 = 2525250 \] ### Step 3: Count the Decimal Places Next, we need to determine where to place the decimal point in our result. - In \( 0.05 \), there are **2** decimal places. - In \( 505.050 \), there are **3** decimal places. Adding these together gives us a total of \( 2 + 3 = 5 \) decimal places. ### Step 4: Place the Decimal Point Now, we will place the decimal point in our result \( 2525250 \). We count 5 places from the right: \[ 2525250 \rightarrow 252.5250 \] Thus, the final answer is: \[ \boxed{252.525} \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate: 0.002 xx 100

Evaluate: 0.02 xx 1000

Evaluate: 0.32 xx 11

Evaluate: 0.2 xx 10

Evaluate : 0.0042 xx 1000

Evaluate : 0. 09 xx 1000

Evaluate: (0.8 xx 0.8 xx 0.8 + 0.5 xx 0.5 xx 0.5)/(0.8 xx 0.8 - 0.8 xx 0.5 + 0.5 xx 0.5)

Evaluate: 7 xx 0. 007

Evaluate: (0.6 xx 0.6 xx 0.6- 0.3 xx 0.3 xx 0.3)/(0.6 xx 0.6 + 0.6 xx 0.3 + 0.3 xx 0.3) , using suitable identity

Evaluate : 1.2 xx 2.3 xx 0.4