Home
Class 7
MATHS
Evaluate : ((3)/(4))^(2)...

Evaluate : `((3)/(4))^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate \(\left(\frac{3}{4}\right)^{2}\), we can follow these steps: ### Step 1: Write the expression We start with the expression: \[ \left(\frac{3}{4}\right)^{2} \] ### Step 2: Apply the exponent When we square a fraction, we square both the numerator and the denominator: \[ \left(\frac{3}{4}\right)^{2} = \frac{3^{2}}{4^{2}} \] ### Step 3: Calculate the squares Now we calculate the squares of the numerator and the denominator: \[ 3^{2} = 9 \quad \text{and} \quad 4^{2} = 16 \] ### Step 4: Write the new fraction Substituting the squared values back into the fraction gives us: \[ \frac{3^{2}}{4^{2}} = \frac{9}{16} \] ### Step 5: Final answer Thus, the evaluation of \(\left(\frac{3}{4}\right)^{2}\) is: \[ \frac{9}{16} \] ### Decimal Conversion (optional) If you want to express \(\frac{9}{16}\) in decimal form, you can divide 9 by 16: \[ \frac{9}{16} = 0.5625 \] ### Summary of the solution: The evaluated result of \(\left(\frac{3}{4}\right)^{2}\) is \(\frac{9}{16}\) or \(0.5625\) in decimal form. ---
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

Evaluate : ((1)/(4)) ^(-2) - 3 (32)^((2)/(5)) xx ( 7) ^(0) +((9)/(16))^(-(1)/(2))

Evaluate : (2^(3))^(4)

Evaluate : [(1)/(4)]^(-2)-3(8)^((2)/(3)) xx 4^(0) + [(9)/(16)]^(-(1)/(2))

Evaluate ((1)/(4))^(-2)-3(8)^(2//3)xx4^(0)+((9)/(10))^(-1//2)

Evaluate: 5+(3)/(7)-(4-(2)/(9))

Evaluate : (i) (2)/(3)-(4)/(5)

Evaluate : sqrt(5(2(3)/(4) - (3)/(10)))

Evaluate : (-2)^(3)xx4^(3)

Evaluate : (4)/((216)^(-2//3))+(1)/((256)^(-3//4))+(2)/((343)^(-1//3))

Evaluate : (ii) (2)/(3)+(-4)/(5)-(1)/(3)-(2)/(5)