Home
Class 7
MATHS
Express the following in exponential for...

Express the following in exponential form :
a. `(16)/(81)`
b. `(-27)/(1000)`

Text Solution

AI Generated Solution

The correct Answer is:
To express the given fractions in exponential form, we will perform the prime factorization of the numerators and denominators. ### a. Expressing `(16)/(81)` in exponential form: 1. **Prime Factorization of 16**: - 16 can be factored into prime numbers: - \( 16 = 2 \times 2 \times 2 \times 2 = 2^4 \) 2. **Prime Factorization of 81**: - 81 can be factored into prime numbers: - \( 81 = 3 \times 3 \times 3 \times 3 = 3^4 \) 3. **Writing the fraction in exponential form**: - Now we can write the fraction using the prime factorization: - \( \frac{16}{81} = \frac{2^4}{3^4} \) 4. **Combining the powers**: - We can express this as: - \( \frac{2}{3}^4 \) So, the exponential form of \( \frac{16}{81} \) is \( \left(\frac{2}{3}\right)^4 \). ### b. Expressing `(-27)/(1000)` in exponential form: 1. **Prime Factorization of -27**: - -27 can be factored into prime numbers: - \( -27 = - (3 \times 3 \times 3) = -3^3 \) 2. **Prime Factorization of 1000**: - 1000 can be factored into prime numbers: - \( 1000 = 10 \times 10 \times 10 = (2 \times 5)^3 = 2^3 \times 5^3 \) 3. **Writing the fraction in exponential form**: - Now we can write the fraction using the prime factorization: - \( \frac{-27}{1000} = \frac{-3^3}{2^3 \times 5^3} \) 4. **Separating the negative sign**: - We can express this as: - \( -\frac{3^3}{(2 \times 5)^3} = -\frac{3^3}{10^3} \) So, the exponential form of \( \frac{-27}{1000} \) is \( -\frac{3^3}{10^3} \). ### Final Answers: - a. \( \left(\frac{2}{3}\right)^4 \) - b. \( -\frac{3^3}{10^3} \) ---
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

Express the following in exponential form : a. (49)/(100) b. (-32)/(3125)

Express the following in exponential form. a. (256)/(10000) b. (-1)/(243)

Express the following product in exponential form. a. (-7)^(19)xx(4)^(19) b. (-1)^(66)xx(-a)^(66)

Express the following in the form a+i b : (-5i)(1/8i)

Express the following in the form a+i b : i^(-39)

Express the following in the form a+i b : i^9+i^(19)

Express the following as product of exponential forms. a. (3xx5)^(12) b. (-3k)^(20)

Express the following as product of exponential forms. a. (9xx3)^(18) b. (-pq)^(12)

Express the following in exponential form: a) log_(2)32=5 b) log_(sqrt(2))4=4 c) log_(10)0.01=-2

Express the following product in exponential forms. a. (-4)^(||)xx(-3)^(||) 3^(89)xx(-a)^(89)