Home
Class 7
MATHS
Find n if (5^(3))^(4)=(5^(2))^(n)...

Find n if `(5^(3))^(4)=(5^(2))^(n)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( (5^3)^4 = (5^2)^n \), we will use the power of a power property of exponents, which states that \( (a^m)^n = a^{m \cdot n} \). ### Step-by-Step Solution: 1. **Apply the Power of a Power Property**: \[ (5^3)^4 = 5^{3 \cdot 4} \] This simplifies to: \[ 5^{12} \] 2. **Apply the Power of a Power Property on the Right Side**: \[ (5^2)^n = 5^{2 \cdot n} \] 3. **Set the Exponents Equal to Each Other**: Since the bases are the same, we can set the exponents equal: \[ 12 = 2n \] 4. **Solve for \( n \)**: To find \( n \), divide both sides by 2: \[ n = \frac{12}{2} = 6 \] ### Final Answer: The value of \( n \) is \( 6 \). ---
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

Find n if : a. (3^(4))^(5)=(3^(2))^(n) b. 5^(12)=125^(n) c. 7^(2n+4)xx7^(4)=(7^(8))^(2) d. 8^(6)=64^(n)

Find n, if ""^(n)C_(n-4)=5

Find n if : a. ((4)/(49))^(5)xx((4)/(49))^(n-3)=((2)/(7))^(16) b. ((5)/(7))^(12)xx[((7)/(5))^(2)]^(8)=((7)/(5))^(2n-6) c. ((9)/(25))^(4)xx((9)/(25))^(n)=((3)/(5))^(12) d. ((3)/(5))^(20)xx[((5)/(3))^(3)]^(6)=((3)/(5))^(3n-13)

Find n, if ""^(n)P_(5)=42 ""^(n)P_(3), n ge 5

Find the value of n : (2^(3)xx5^(n+1)xx10^(2)xx5^(n-1))/(125xx5^(n-2)xx2^(7))=(25)/(4)

Simplify : (5^(n+4)-6xx5^(n+2))/(9xx5^(n+1)-5^(n+1)xx4)

Find n if : P(n, 6 ) = 3( P(n,5)

Simplify : (5^(n+3)-6xx5^(n+1))/(9xx5^(n)-5^(n)xx2^(2))

Simplify : (5^(n+3)-6xx5^(n+1))/(9xx5^(n)-5^(n)xx2^(2))

Find (m+n)-:(m-n) , if : (i) m=(2)/(3) "and" n=(3)/(2) (ii) m=(3)/(4) "and" n=(4)/(3) (iii) m=(4)/(5) "and" n=-(3)/(10)