Home
Class 7
MATHS
Evaluate : 3^(4)xx5^(4)...

Evaluate : `3^(4)xx5^(4)`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the expression \( 3^4 \times 5^4 \), we can follow these steps: ### Step 1: Identify the expression We start with the expression: \[ 3^4 \times 5^4 \] ### Step 2: Apply the property of exponents Since both terms have the same exponent (which is 4), we can use the property of exponents that states: \[ a^m \times b^m = (a \times b)^m \] In our case, \( a = 3 \), \( b = 5 \), and \( m = 4 \). Therefore, we can rewrite the expression as: \[ (3 \times 5)^4 \] ### Step 3: Calculate the base Now, we calculate the base: \[ 3 \times 5 = 15 \] So, we can rewrite the expression as: \[ 15^4 \] ### Step 4: Evaluate \( 15^4 \) Next, we need to calculate \( 15^4 \). This means multiplying 15 by itself four times: \[ 15^4 = 15 \times 15 \times 15 \times 15 \] ### Step 5: Calculate \( 15^2 \) First, we can calculate \( 15^2 \): \[ 15 \times 15 = 225 \] ### Step 6: Calculate \( 15^4 \) using \( 15^2 \) Now, we can use \( 15^2 \) to find \( 15^4 \): \[ 15^4 = (15^2) \times (15^2) = 225 \times 225 \] ### Step 7: Calculate \( 225 \times 225 \) Now we calculate \( 225 \times 225 \): \[ 225 \times 225 = 50625 \] ### Final Answer Thus, the value of \( 3^4 \times 5^4 \) is: \[ \boxed{50625} \]
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

Evaluate : 5^(-4)xx(125)^((5)/(3))+(25)^(-(1)/(2))

Evaluate : (-2)^(3)xx4^(3)

Evaluate: (1)/(4) xx 3

Evaluate 3xx4xx7xx2

Evaluate the 3.7xx4.5

Evaluate: 3.8 xx 4

Evaluate: 6 xx 3 (3)/(4)

Evaluate: 4.5 xx5

Evaluate : a. (-1)^(11) b. (-3)^(2)xx(5)^(3) c. 6^(2)xx3^(3) d. (-2)^(3)xx(-5)^(2) e. (-1)^(7)xx2 f. (-1)^(4)xx(-1)^(5) g. 4^(3)xx3^(4) h. (-2)^(5)xx5^(3) i. (-4)^(3)xx(-6)^(3) j. (-1)^(33)xx(-3)^(1) k. ((-1)/(6))^(2) l. ((2)/(11))^(3)

Evaluate: 4 xx (9)/(5)