Home
Class 7
MATHS
Evaluate : (-2)^(3)xx4^(3)...

Evaluate : `(-2)^(3)xx4^(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the expression \((-2)^{3} \times 4^{3}\), we can follow these steps: ### Step 1: Rewrite \(4\) in terms of base \(2\) We know that \(4\) can be expressed as \(2^{2}\). Therefore, we can rewrite the expression as: \[ (-2)^{3} \times (2^{2})^{3} \] ### Step 2: Apply the power of a power rule Using the exponent rule \((a^{m})^{n} = a^{m \times n}\), we can simplify \((2^{2})^{3}\): \[ (-2)^{3} \times 2^{2 \times 3} = (-2)^{3} \times 2^{6} \] ### Step 3: Separate the bases Now, we can express \((-2)^{3}\) as: \[ (-1)^{3} \times 2^{3} \] Thus, our expression becomes: \[ (-1)^{3} \times 2^{3} \times 2^{6} \] ### Step 4: Combine the powers of \(2\) Using the property \(a^{m} \times a^{n} = a^{m+n}\), we combine the powers of \(2\): \[ (-1)^{3} \times 2^{3 + 6} = (-1)^{3} \times 2^{9} \] ### Step 5: Calculate the final result Now, we know that \((-1)^{3} = -1\), so we can write: \[ -1 \times 2^{9} = -2^{9} \] Calculating \(2^{9}\): \[ 2^{9} = 512 \] Thus, the final result is: \[ -512 \] ### Final Answer: \[ (-2)^{3} \times 4^{3} = -512 \] ---
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

Evaluate : 3^(4)xx5^(4)

Evaluate: (1)/(4) xx 3

Evaluate : [(-(2)/(3))^(-2)]^(3)xx((1)/(3))^(-4)xx3^(-1)xx(1)/(6)

Evaluate : (i) ((2)/(-3)xx(5)/(4))+((5)/(9)xx(3)/(-10))

Evaluate : sqrt(3^(2) xx 6^(3) xx 24)

(-2)xx(-3)xx(+4)

Evaluate : 1. 7^(0)xx4^(0)xx8^(0) 2. (9^(0)+7^(0))xx3^(0)

Find the value of the (-4)^(3)xx5^(2)xx6^(0) .

Evaluate : 5^(-4)xx(125)^((5)/(3))+(25)^(-(1)/(2))

Evaluate: (-2) times (-3) times (-1) times (-4) times (-7)