Home
Class 7
MATHS
Evaluate : 3^(5)-:2^(5)...

Evaluate : `3^(5)-:2^(5)`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate \( \frac{3^5}{2^5} \), we can follow these steps: ### Step 1: Apply the exponent rule Using the exponent rule \( \frac{a^x}{b^x} = \left(\frac{a}{b}\right)^x \), we can rewrite the expression: \[ \frac{3^5}{2^5} = \left(\frac{3}{2}\right)^5 \] ### Step 2: Calculate \( \frac{3}{2} \) Now, we need to calculate \( \frac{3}{2} \): \[ \frac{3}{2} = 1.5 \] ### Step 3: Raise \( 1.5 \) to the power of 5 Next, we calculate \( (1.5)^5 \): \[ (1.5)^5 = 1.5 \times 1.5 \times 1.5 \times 1.5 \times 1.5 \] Calculating step by step: - \( 1.5 \times 1.5 = 2.25 \) - \( 2.25 \times 1.5 = 3.375 \) - \( 3.375 \times 1.5 = 5.0625 \) - \( 5.0625 \times 1.5 = 7.59375 \) Thus, \( (1.5)^5 = 7.59375 \). ### Final Answer Therefore, the value of \( \frac{3^5}{2^5} \) is: \[ \frac{3^5}{2^5} = 7.59375 \] ---
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

Evaluate : 2^(3)xx2^(5)

Evaluate : (-5)^(2)xx(-5)^(3)

Evaluate: 2^(log_(3)5)-5^(log_(3)2)

Evaluate: (3)/(5) div 2

Evaluate : 5^(-4)xx(125)^((5)/(3))+(25)^(-(1)/(2))

Evaluate : (v) (a^2 + 5) (a^2 -3)

Evaluate: int(5x^(3)+2x^(-5)-7x+(1)/(sqrt(x))+(5)/(x))dx

Evaluate : (ii) (2)/(3)+(-4)/(5)-(1)/(3)-(2)/(5)

Evaluate : (i) (2x - (3)/(5) ) (2x + (3)/(5) )

Evaluate : (ii) (2)/(3)+(-4)/(5)+(1)/(3)+(2)/(5)