Home
Class 7
MATHS
Evaluate : 6^(4)-:2^(4)...

Evaluate : `6^(4)-:2^(4)`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the expression \( \frac{6^4}{2^4} \), we can follow these steps: ### Step-by-Step Solution: 1. **Identify the expression**: We start with the expression \( \frac{6^4}{2^4} \). 2. **Use the property of exponents**: We can apply the property of exponents which states that \( \frac{a^c}{b^c} = \left(\frac{a}{b}\right)^c \). Here, \( a = 6 \), \( b = 2 \), and \( c = 4 \). \[ \frac{6^4}{2^4} = \left(\frac{6}{2}\right)^4 \] 3. **Simplify the fraction**: Now, simplify \( \frac{6}{2} \). \[ \frac{6}{2} = 3 \] 4. **Rewrite the expression**: Substitute back into the expression. \[ \left(\frac{6}{2}\right)^4 = 3^4 \] 5. **Final expression**: Therefore, we have: \[ 6^4 \div 2^4 = 3^4 \] 6. **Calculate \( 3^4 \)**: Now, we can calculate \( 3^4 \). \[ 3^4 = 3 \times 3 \times 3 \times 3 = 81 \] ### Final Answer: Thus, the value of \( \frac{6^4}{2^4} \) is \( 81 \). ---
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

Evaluate : ((-5)/(6))^(4)

Evaluate: 72-:6xx4

Evaluate : ((4 + 8)/(2-(-6)))(4+8 -: 2 -(-6))

Evaluate: (5)/(4)-(7)/(6)-(-(2)/9)

Evaluate int(x^(6)+x^(4)+x^(2))sqrt(2x^(4)+3x^(2)+6)dx .

Evaluate |(4+8)/(2-(-6))|-[4+8div 2-(-6)]

Evaluate: (i) 2/(-3) + -4/9 , (ii) =1/2 + -3/4 , (iii) 7/-9 + -5/6 (iv) 2 + -3/4 , (v) 3 + -5/6 , (vi) -4 + 2/3

Find the value of the (-6)^(4)

Use the formula : (a+b) (a-b) = a^(2) - b^(2) to evaluate : (vi) 4.6 xx 5.4

Find the value of the (-4)^(3)xx5^(2)xx6^(0) .