Home
Class 7
MATHS
Simplify and write in exponential form :...

Simplify and write in exponential form : `(12^(4)xx9^(4)xx4)/(6^(3)xx8^(2)xx27)`

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the expression \((12^{4} \times 9^{4} \times 4) / (6^{3} \times 8^{2} \times 27)\) and write it in exponential form, follow these steps: ### Step 1: Rewrite each term in terms of prime factors - \(12 = 2^{2} \times 3^{1}\) - \(9 = 3^{2}\) - \(4 = 2^{2}\) - \(6 = 2^{1} \times 3^{1}\) - \(8 = 2^{3}\) - \(27 = 3^{3}\) ### Step 2: Substitute the prime factorization into the expression \[ = \frac{(2^{2} \times 3^{1})^{4} \times (3^{2})^{4} \times (2^{2})}{(2^{1} \times 3^{1})^{3} \times (2^{3})^{2} \times (3^{3})} \] ### Step 3: Apply the power of a product rule \[ = \frac{2^{8} \times 3^{4} \times 2^{2}}{2^{3} \times 3^{3} \times 2^{6} \times 3^{3}} \] ### Step 4: Combine the powers of the same base in the numerator \[ = \frac{2^{8 + 2} \times 3^{4}}{2^{3 + 6} \times 3^{3 + 3}} \] \[ = \frac{2^{10} \times 3^{4}}{2^{9} \times 3^{6}} \] ### Step 5: Apply the quotient rule for exponents \[ = 2^{10 - 9} \times 3^{4 - 6} \] \[ = 2^{1} \times 3^{-2} \] ### Step 6: Rewrite negative exponents \[ = \frac{2^{1}}{3^{2}} \] ### Final Answer Thus, the simplified expression in exponential form is: \[ \frac{2}{3^{2}} \] ---
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

Simplify and write in exponential form : [(3^(2))^(4)xx4^(8)]-:7^(8)

Simplify and write the in the exponential form: (2^(4)xx3^(5))/(6xx3^(2))

Simplify and write in exponential form : (16xx25xx5^(2)xxt^(8))/(10^(3)xxt^(4))

Simplify and write in exponential form : [(2^(3))^(2)xx3^(6)]-:5^(6)

Simplify and write the in the exponential form: (3^(7)xx3^(4))/(3^(6))

Simplify and write the in the exponential form: 10^(2)xx7^(0)+3^(3)xx2^(2)

Simplify and write in exponential form : (3xx7^(2)xx11^(8))/(21xx11^(3))

Simplify and write the in the exponential form: ((-3)^(3)xx7^(4)xx7)/(3^(2)xx7^(2))

Simplify and write the in the exponential form: (2^(4)xx2xx7^(3)xx7^(6))/(2^(3)xx7^(4))

Simplify and write in exponential form : a. [(2^(3))^(3)xx4^(5)]-:5^(5) b. (10xx4^(4)xx3^(3))/(6^(3)xx2^(5)xx15)