Home
Class 7
MATHS
Simplify and write in exponential form :...

Simplify and write in exponential form : `(3xx7^(2)xx11^(8))/(21xx11^(3))`

A

`7xx11^(3)`

B

`7xx11^(5)`

C

`7xx11^(6)`

D

`7xx11^(9)`

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the expression \((3 \times 7^{2} \times 11^{8})/(21 \times 11^{3})\) and write it in exponential form, we can follow these steps: ### Step-by-Step Solution: 1. **Rewrite the expression**: \[ \frac{3 \times 7^{2} \times 11^{8}}{21 \times 11^{3}} \] 2. **Factor out the denominator**: Notice that \(21\) can be expressed as \(3 \times 7\). So we can rewrite the denominator: \[ 21 = 3 \times 7 \] Therefore, the expression becomes: \[ \frac{3 \times 7^{2} \times 11^{8}}{3 \times 7 \times 11^{3}} \] 3. **Cancel common factors**: We can cancel \(3\) from the numerator and denominator: \[ \frac{7^{2} \times 11^{8}}{7 \times 11^{3}} \] 4. **Simplify the expression**: Now we can simplify \(7^{2}/7\) and \(11^{8}/11^{3}\): \[ 7^{2}/7 = 7^{2-1} = 7^{1} = 7 \] \[ 11^{8}/11^{3} = 11^{8-3} = 11^{5} \] 5. **Combine the results**: Now we combine the simplified terms: \[ 7 \times 11^{5} \] 6. **Final answer**: Thus, the simplified expression in exponential form is: \[ 7 \times 11^{5} \] ### Final Result: \[ 7 \times 11^{5} \]
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

Simplify and write in exponential form : (16xx25xx5^(2)xxt^(8))/(10^(3)xxt^(4))

Simplify and write in exponential form : [(3^(2))^(4)xx4^(8)]-:7^(8)

Simplify and write the in the exponential form: (2^(4)xx3^(5))/(6xx3^(2))

Simplify and write the in the exponential form: (3^(7)xx3^(4))/(3^(6))

Simplify and write in exponential form : [(2^(3))^(2)xx3^(6)]-:5^(6)

Simplify and write in exponential form : (12^(4)xx9^(4)xx4)/(6^(3)xx8^(2)xx27)

Simplify and write the in the exponential form: ((3^(2))^(3)xx7^(3)xx7^(6))/(2^(3)xx7^(4))

Simplify and write the in the exponential form: ((-3)^(3)xx7^(4)xx7)/(3^(2)xx7^(2))

Simplify and write the in the exponential form: (2^(4)xx2xx7^(3)xx7^(6))/(2^(3)xx7^(4))

Simplify and write the in the exponential form: 10^(2)xx7^(0)+3^(3)xx2^(2)