Home
Class 7
MATHS
Find the value of n, given : (2xx4^(3)x...

Find the value of n, given : `(2xx4^(3)xx2^(n-4)xx3xx2^(n+2))/(3^(3)xx2^(16))=(2)/(9)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \[ \frac{2 \times 4^3 \times 2^{n-4} \times 3 \times 2^{n+2}}{3^3 \times 2^{16}} = \frac{2}{9} \] we will follow these steps: ### Step 1: Simplify the expression First, we can rewrite \(4\) as \(2^2\). Therefore, \(4^3\) can be expressed as: \[ 4^3 = (2^2)^3 = 2^{6} \] Now, substituting this back into the equation gives: \[ \frac{2 \times 2^6 \times 2^{n-4} \times 3 \times 2^{n+2}}{3^3 \times 2^{16}} = \frac{2}{9} \] ### Step 2: Combine the powers of 2 Next, we can combine the powers of \(2\) in the numerator: \[ 2 \times 2^6 \times 2^{n-4} \times 2^{n+2} = 2^{1 + 6 + (n-4) + (n+2)} = 2^{2n + 5} \] So the equation now looks like: \[ \frac{2^{2n + 5} \times 3}{3^3 \times 2^{16}} = \frac{2}{9} \] ### Step 3: Simplify the fraction Now, we can simplify the fraction: \[ \frac{2^{2n + 5} \times 3}{3^3 \times 2^{16}} = \frac{2^{2n + 5}}{3^2 \times 2^{16}} = \frac{2^{2n + 5 - 16}}{9} = \frac{2^{2n - 11}}{9} \] ### Step 4: Set the equation equal to \(\frac{2}{9}\) Now we have: \[ \frac{2^{2n - 11}}{9} = \frac{2}{9} \] ### Step 5: Eliminate the denominators Multiplying both sides by \(9\): \[ 2^{2n - 11} = 2 \] ### Step 6: Express \(2\) as a power of \(2\) We can express \(2\) as \(2^1\): \[ 2^{2n - 11} = 2^1 \] ### Step 7: Set the exponents equal Since the bases are the same, we can set the exponents equal to each other: \[ 2n - 11 = 1 \] ### Step 8: Solve for \(n\) Now, solving for \(n\): \[ 2n = 1 + 11 \] \[ 2n = 12 \] \[ n = 6 \] ### Final Answer Thus, the value of \(n\) is: \[ \boxed{6} \]
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

find the value of n, given : (4^(n-2)xx2^(n-5)xx6xx2^(n+3))/(3xx6^(2))=(4)/(18)

Find the value of n : (2^(3)xx5^(n+1)xx10^(2)xx5^(n-1))/(125xx5^(n-2)xx2^(7))=(25)/(4)

Find the value of : 2x xx 3yz xx 4zx

Find the value of the (-4)^(3)xx5^(2)xx6^(0) .

Simplify : (8^(3a)xx2^(5)xx2^(2a))/(8xx3^(3n)-5xx27^(n))

Find the value of x if: (-9)/(16)xx(4)/(3)=(x)/(2)

(-2)xx(-3)xx(+4)

Find the value of 16+8-:4-2xx3 2. 28-5xx6+2

Simplify (8^(3a)xx2^(5)xx2^(2a))/(4xx2^(11a)xx2^(-2a))

(-1)xx(-2)xx(-3)xx(-4)