Home
Class 7
MATHS
Add x^2+y^2+3xy-6 and 2x^2-4y^2-xy+5...

Add `x^2+y^2+3xy-6 and 2x^2-4y^2-xy+5`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of adding the algebraic expressions \(x^2 + y^2 + 3xy - 6\) and \(2x^2 - 4y^2 - xy + 5\), we will follow these steps: ### Step 1: Write down the expressions to be added We start with the two expressions: \[ x^2 + y^2 + 3xy - 6 \] and \[ 2x^2 - 4y^2 - xy + 5 \] ### Step 2: Combine the expressions We add the two expressions together: \[ (x^2 + y^2 + 3xy - 6) + (2x^2 - 4y^2 - xy + 5) \] ### Step 3: Rearrange the terms Now, we will rearrange the terms by grouping like terms together: \[ (x^2 + 2x^2) + (y^2 - 4y^2) + (3xy - xy) + (-6 + 5) \] ### Step 4: Simplify each group Now we simplify each group: 1. For \(x^2 + 2x^2\): \[ 1x^2 + 2x^2 = 3x^2 \] 2. For \(y^2 - 4y^2\): \[ 1y^2 - 4y^2 = -3y^2 \] 3. For \(3xy - xy\): \[ 3xy - 1xy = 2xy \] 4. For \(-6 + 5\): \[ -6 + 5 = -1 \] ### Step 5: Combine the simplified terms Now we combine all the simplified terms: \[ 3x^2 - 3y^2 + 2xy - 1 \] ### Final Answer Thus, the result of adding the two algebraic expressions is: \[ 3x^2 - 3y^2 + 2xy - 1 \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

Using horizontal method : Add x^(2)+y^(2)- 2xy , -2x^(2)-y^(2)-2xy and 3x^(2) +y^(2) +xy

Subtract 2x^2-3xy from the sum of x^2-3y^2+11xy and y^2-4x^2+9xy

How much is -x^(2)+7y^(2)-3xy less than 2x^(2)-y^(2)+xy ?

Add : 5x^(2)-2xy +8y^(2), 3xy -7y^(2)-2x^(2) and y^(2)+xy-4x^(2) .

Add the following expressions using horizontal method : -x^(2)y + xy^(2) + 2xy , 3x^(2) y + 4xy^(2) + 5xy and 7x^(2)y - 10xy^(2) - xy

Subtract x^2-3y^2-6xy from the sum of 3x^2-y^2+8xy and 5y^2-3x^2+3xy

How much does 5x^2-8xy-6y^2 exceed 3x^2-4xy+2y^2-xy^2 ?

Subtract 5x^2 - 4y^2 + 6y - 3 from 7x^2 - 4xy + 8y^2 + 5x - 3y .

Simplify and find the value of the simplified expression when x=-1 and y=2. 3(2x^2-4y^2)- [7xy-[3(x^3-2y^2)-2xy)]

What should be added to x^2+xy+y^2 to obtain 2x^2+3xy ?