Home
Class 7
MATHS
Add 4a^2b-2b^2c+3c^2a+4abc-5 and a^2b+b^...

Add `4a^2b-2b^2c+3c^2a+4abc-5 and a^2b+b^2-2c^2+8ab`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of adding the two algebraic expressions \(4a^2b - 2b^2c + 3c^2a + 4abc - 5\) and \(a^2b + b^2 - 2c^2 + 8ab\), we will follow these steps: ### Step 1: Write down the expressions We have: 1. First expression: \(4a^2b - 2b^2c + 3c^2a + 4abc - 5\) 2. Second expression: \(a^2b + b^2 - 2c^2 + 8ab\) ### Step 2: Arrange the expressions for addition We will align the two expressions so that like terms are in the same column: \[ \begin{array}{r} 4a^2b \\ -2b^2c \\ 3c^2a \\ 4abc \\ -5 \\ \hline \end{array} + \begin{array}{r} a^2b \\ b^2 \\ -2c^2 \\ 8ab \\ \hline \end{array} \] ### Step 3: Identify and combine like terms Now, we will combine the like terms from both expressions: - For \(a^2b\): \(4a^2b + a^2b = 5a^2b\) - For \(b^2c\): \(-2b^2c + b^2 = -2b^2c + 1b^2 = -2b^2c\) (since there is no like term for \(b^2\) in the first expression) - For \(c^2a\): \(3c^2a\) (no like term in the second expression) - For \(abc\): \(4abc + 8ab\) (no like term in the first expression) - For the constant terms: \(-5\) (no like term in the second expression) - For \(c^2\): \(-2c^2\) (no like term in the first expression) ### Step 4: Write the final expression Combining all the results, we have: \[ 5a^2b - 2b^2c + 3c^2a + 4abc + b^2 - 2c^2 - 5 \] ### Final Answer Thus, the final result of adding the two expressions is: \[ 5a^2b - 2b^2c + 3c^2a + 4abc + b^2 - 2c^2 - 5 \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Expand (4a-2b-3c)^2

If D is the mid-point of the side B C of triangle A B C and A D is perpendicular to A C , then 3b^2=a^2-c ^2 (b) 3a^2=b^2 3c^2 b^2=a^2-c^2 (d) a^2+b^2=5c^2

Prove that: |-a^2 ab ac ba -b^2 bc ac bc c^2| =4a^2b^2c^2 .

Simplify: -1/2a^2b^2c+1/3a b^2c-1/4a b c^2-1/5c b^2a^2+1/6c b^2a-1/7c^2a b+1/8c a^2bdot

Identify the like terms in the following algebraic expressions: (i) a^2+b^2-2a^2+c^2+4a (ii) 3x+4x y-2y z+5/2z y (iii) a b c+a b^2c+2a c b^2+3c^2a b+b^2a c-2a^2b c+3c a b^2

Show that: |b^2+c^2a b a c b a c^2+a^2b cc a c b a^2+b^2|=4a^2\ b^2\ c^2 .

Factorize the following |3a+b+c a^3+b^3+c^3a+b+c a^2+b^2+c^2a^4+b^4+c^4a^2+b^2+c^2a^3+b^3+c^3a^5+b^5+c^5|

Show that: |b^2+c^2a b a c b a c^2+a^2b c c a c b a^2+b^2|=4a^2b^2c^2

Using properties of determinants, prove that |[a^2, bc, ac+c^2] , [a^2+ab, b^2, ac] , [ab, b^2+bc, c^2]| = 4a^2b^2c^2

Prove that [[1+a^2+a^4, 1+a b+a^2b^2 ,1+a c+a^2c^2],[ 1+a b+a^2b^2, 1+b^2+b^4, 1+b c+b^2c^2],[ 1+a c+a^2c^2, 1+b c+b^2c^2, 1+c^2+c^2]]=(a-b)^2(b-c)^2(c-a)^2