Home
Class 7
MATHS
Find the value of 3x^2-5x+8 for x=3...

Find the value of `3x^2-5x+8` for x=3

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of the expression \(3x^2 - 5x + 8\) for \(x = 3\), we will substitute \(3\) into the expression and simplify step by step. ### Step-by-Step Solution: 1. **Write down the expression**: \[ 3x^2 - 5x + 8 \] 2. **Substitute \(x = 3\)** into the expression: \[ 3(3^2) - 5(3) + 8 \] 3. **Calculate \(3^2\)**: \[ 3^2 = 9 \] So, the expression now becomes: \[ 3(9) - 5(3) + 8 \] 4. **Multiply \(3\) by \(9\)**: \[ 3 \times 9 = 27 \] Now the expression is: \[ 27 - 5(3) + 8 \] 5. **Calculate \(5(3)\)**: \[ 5 \times 3 = 15 \] Now the expression is: \[ 27 - 15 + 8 \] 6. **Subtract \(15\) from \(27\)**: \[ 27 - 15 = 12 \] Now the expression is: \[ 12 + 8 \] 7. **Add \(8\) to \(12\)**: \[ 12 + 8 = 20 \] ### Final Answer: The value of \(3x^2 - 5x + 8\) for \(x = 3\) is \(20\). ---
Promotional Banner

Similar Questions

Explore conceptually related problems

If x=5, find the value of : 3x^(2)-8x-10

If x=(sqrt(3)+1)/2, find the value of 4x^3+2x^2-8x+7.

Find the value of x , if 5^(x-3). 3^(2x-8)=225

Find the value of x , if 5^(x-3)\ 3^(2x-8)=225

Find the value of : 3x^(2)+9x^(2)-x+8 where x=-2

Find the value of 27 x^3+\ 8y^3, if (i) 3x+2y=14 and x y=8 (ii) 3x+2y=20\ and x y=(14)/9

If x=1/(2-sqrt(3)), find the value of x^3-2x^2-7x+5

If x=1/(2-sqrt(3)), find the value of x^3-2x^2-7x+5

If x=1/(2-sqrt(3)), find the value of x^3-2x^2-7x+5

If 2x+3y=13 and x y=6 , find the value of 8x^3+27 y^3