Home
Class 7
MATHS
Find the value of : 3abc-2a^2+4b^3+ac ...

Find the value of :
`3abc-2a^2+4b^3+ac` given that `a=-2,b=3` and `c=-1`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the value of 2a^(3)-b^(4)+3a^(2)b^(3) when a =3 , b=-1 .

Find the value of the products: (4a^2+3b)(4a^2+3b)a t\ a=1,\ b=2.

If A= [[1,2],[3,4]] , adjA= [[4,a],[-3,b]] , then the values of a and b are: (a) a=-2, b=1 (b) a=2, b= 4 (c) a=2, b=-1 (d) a=1, b=-2

If a= 2, b= 3 and c= 4, find the value of : (ab + bc + ca- a^(2) -b^(2)-c^(2))/(3abc-a^(3)-b^(3)-c^(3)) , using suitable identity

If (x+1) is a factor of 2x^(3)+ax^(2)+2bx+1 , then find the value of a and b given that 2a-3b=4.

If (x+1) is a factor of 2x^(3)+ax^(2)+2bx+1 , then find the value of a and b given that 2a-3b=4.

When a=3 , b=0 , c=-2 , find the value of : 1/2a^4 + 2/3b^2c^2 - 1/9a^2c^2 +c^3 .

Simplify and find the value of the following expression when a=3 and b=1: 4(a^2+b^2+2a b)-[4(a^2+b^2-2a b)-{-b^3+4(a-3)}]

Find the values of a,b,c and d, if 3[{:(a,b),(c,d):}]=[{:(a,6),(-1,2d):}]+[{:(4,a+b),(c+d,3):}] .

Find the angles of /_\ABC whose vertices are A((-1,3,2), B(2,3,5) and C(3,5,-2) .