Home
Class 12
MATHS
If y=A cos x+B sin x then prove that (d^...

If `y=A cos x+B sin x` then prove that `(d^(2)y)/(dx^(2))+y=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=A cos x+B sin x, then prove that : (d^(4)y)/(dx^(4))=y

y=5cos x-3sin x prove that (d^(2)y)/(dx^(2))+y=0

If y=A sin mx+B cos mx, then prove that (d^(2)y)/(dx^(2))+m^(2)y=0

If y=5" cos"x-3" sin"x , prove that (d^(2)y)/(dx^(2))+y=0.

If y=Acos(logx)+B sin(logx) then prove that x^(2)(d^(2)y)/(dx^(2))+x(dy)/(dx)+y=0 .

If y=A cos(log x)+B sin(log x), prove that x^(2)(d^(2)y)/(dx^(2))+x(dy)/(dx)+y=0

If y=sin(log x), then prove that (x^(2)d^(2)y)/(dx^(2))+x(dy)/(dx)+y=0

If y=a cos(log x)+sin(log x), prove that (x^(2)d^(2))/(dx^(2))+x(dy)/(dx)+y=0

If x=a sin t-b cos t,quad y=a cos t+b sin t prove that (d^(2)y)/(dx^(2))=-(x^(2)+y^(2))/(y^(3))

If =a sin t-b cos t,y=a cos t+b sin t, prove that (d^(2)y)/(dx^(2))=-(x^(2)+y^(2))/(y^(3))