Home
Class 12
MATHS
If omega is the cube root of unity then ...

If `omega` is the cube root of unity then find the value of `|[1,omega^(6),omega^(8)],[omega^(6),omega^(3),omega^(7)],[omega^(8),omega^(7),1]|`

Promotional Banner

Similar Questions

Explore conceptually related problems

If omega is cube root of unit, then find the value of determinant |(1,omega^3,omega^2), (omega^3,1,omega), (omega^2,omega,1)|.

If omega is a cube root of unity,then find the value of the following: (1+omega-omega^(2))(1-omega+omega^(2))

If omega is a cube root of unity,then find the value of the following: (1-omega)(1-omega^(2))(1-omega^(4))(1-omega^(8))

Solve: /_\ = |[omega^(3),omega^(4),omega^(5)],[omega^(6),omega^(8),omega^(2)],[omega^(7),omega^(9),omega]|

If omega is the cube root of unity,prove that det[[omega^(6),omega^(3),omega^(8)omega^(8),omega^(7),1]]=3

If omega is a complex cube root of unity then the matrix A = [(1, omega^(2),omega),(omega^(2),omega,1),(omega,1,omega^(2))] is a

If omega is cube root of unit,then value of | omega^(1)quad omega^(4)quad omega^(8) determinant det[[omega^(1),omega^(8),omega^(8)omega^(4),omega^(8),1omega^(8),1,omega^(4)]] is

If omega is a complex cube root of unity then (1-omega+omega^(2))(1-omega^(2)+omega^(4))(1-omega^(4)+omega^(8))(1-omega^(8)+omega^(16))