Home
Class 11
MATHS
If A=[(1, -2, 1),(0, 1 ,-1),(3, -1, 1)] ...

If `A=[(1, -2, 1),(0, 1 ,-1),(3, -1, 1)]` then find `A^(3)-3A^(2)-A-3I` where I is unit matrix of order 3.

Promotional Banner

Similar Questions

Explore conceptually related problems

if A[{:(1,3,2),(2,0,3),(1,-1,1):}], then find A^(3)-2A^(2)+A-I_(3).

If A= [(1,1,3),(5,2,6),(-2,-1,-3)] then find A^(14)+3A-2I

If A=([3,23,3]) and B=([1,-(2)/(3)-1,1]) show that AB=I_(2) where I_(2) is the unit matrix of order 2

If A=[[1,-3,22,0,-11,2,3]], then show that AA^(3)-4A^(2)-3A+11I=0 where O and I are null and identity matrix of order 3 respectively.

If A = ({:( 1,2,3),( 2,1,2),( 2,2,1) :}) and A^(2) -4A -5l =O where I and O are the unit matrix and the null matrix order 3 respectively if , 15A^(-1) =lambda |{:( -3,2,3),(2,-3,2),(2,2,-3):}| then the find the value of lambda

Consider a matrix A=[(0,1,2),(0,-3,0),(1,1,1)]. If 6A^(-1)=aA^(2)+bA+cI , where a, b, c in and I is an identity matrix, then a+2b+3c is equal to

Let Z=[(1,1,3),(5,1,2),(3,1,0)] and P=[(1,0,2),(2,1,0),(3,0,1)] . If Z=PQ^(-1) , where Q is a square matrix of order 3, then the value of Tr((adjQ)P) is equal to (where Tr(A) represents the trace of a matrix A i.e. the sum of all the diagonal elements of the matrix A and adjB represents the adjoint matrix of matrix B)

If A=[[1, 0, 0], [0, 1, 1], [0, -2, 4]] and A^(-1)=(1)/(6)(A^(2)+cA+dI) , where c, din R and I is an identity matrix of order 3, then (c, d)=

If A=[[1,4,0],[5,2,6],[1,7,1]] and A^(-1)=(1)/(36)(alpha A^(2)+beta A+yI), where I is an identity matrix of order 3, then value of alpha, beta, gamma