Home
Class 12
MATHS
(b) If (log a)/(q-r)=(log b)/(r-p)=(log ...

(b) If `(log a)/(q-r)=(log b)/(r-p)=(log c)/(p-q)`, prove that `a^(p)b^(q)c^(r)=1`

Promotional Banner

Similar Questions

Explore conceptually related problems

If (log x)/(q-r)=(log y)/(r-p)=(log z)/(p-q) prove that x^(q+r)*y^(r+p)*z^(p+q)=x^(p)*y^(q).z^(r)

log_(10) a^(p).b^(q).c^( r) =?

If a=xy^(p-1),b=xy^(q-1) and c=xy^(r-1) prove that a^(q-r)b^(r-p)c^(p-q)=1

If a=xy^(p-1),b=xy^(q-1) and c=xy^(r-1) prove that a^(q-r)b^(r-p)c^(p-q)=1

log_(a)((P)/(Q))=log_(a)P-log_(a)Q

(2) If a=x^(q+r)*y^(p) , b=x^(r+p)*y^(q) , c=x^(p+q)y^(r) , show that a^(q-r)b^(r-p)c^(p-q)=1

If a, b, c be the pth, qth and rth terms of a G.P., then (q-r) log a+ (r- p)log b+ (p-q) log c is equal to (A) 0 (B) abc (C) ap+bq+cr (D) none of these

If a,b,c are respectively the p^(th), q^(th) and r^(th) terms of the given G.P. then show that (q - r) log a + (r - p) log + (p - q) log c = 0, where a, b, c gt 0