Home
Class 11
MATHS
Solve for x, cos^(-1)((x^(2)-1)/(x^(2)+1...

Solve for x, `cos^(-1)((x^(2)-1)/(x^(2)+1))+tan^(-1)((-2x)/(1-x^(2)))=(2pi)/(3)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve for x:cos^(-1)((x^(2)-1)/(x^(2)+1))+(1)/(2)tan^(-1)((2x)/(1-x^(2)))=(2(pi)/(3))

Solve for x : cos^(-1)((x^2-1)/(x^2+1))+1/2tan^(-1)((2x)/(1-x^2))=(2pi)/3

Solve the following for x:cos^(-1)((x^(2))/(x^(2)))+tan^(-1)((2x)/(x^(2)-1))=(2 pi)/(3)

Solve: cos^(-1) ((x^(2)-1)/(x^(2)+1))+ tan^(-1) ((2x)/(x^(2)-1)) = 2/3 pi .

Solve 3sin^(-1)((2x)/(1+x^(2)))-4cos^(-1)((1-x^(2))/(1+x^(2)))+2tan^(-1)((2x)/(1-x^(2)))=(pi)/(3)

If: 3 sin^(-1)((2x)/(1+x^(2))) - 4 cos^(-1)((1-x^(2))/(1+x^(2))) + 2 tan^(-1)((2x)/(1-x^(2)))=pi/3 , where |x| lt 1 , then: x=

Solve for x : 3 sin^(-1) ((2x)/(1+x^(2))) - 4 cos^(-1) ((1-x^(2))/(1+x^(2))) +2 tan^(-1). ((2x)/(1-x^(2))) = pi/ 2 .

Solve the following equation for x:3(sin^(-1)(2x))/(1+x^(2))-4(cos^(-1)(1-x^(2)))/(1+x^(2))+2(tan^(-1)(2x))/(1-x^(2))=(pi)/(3)

Solve for x : tan^(-1)((x-2)/(x-1))+tan^(-1)((x+2)/(x+1))=pi/4

Solve tan^(-1)((x-1)/(x-2))+tan^(-1)((x+1)/(x+2))=(pi)/(4)