Home
Class 12
MATHS
If tan^(- 1)x+tan^(- 1)y+tan^(- 1)z=pi ...

If `tan^(- 1)x+tan^(- 1)y+tan^(- 1)z=pi` prove that `x+y+z=xyz`

Promotional Banner

Similar Questions

Explore conceptually related problems

If tan^(-1)x+tan^(-1)y+tan^(-1)z=(pi)/(2), prove that xy+yz+zx=1

If tan^(-1)x+tan^(-1)y+tan^(-1)z=(pi)/(2) then prove that yz+zx+xy=1

If tan^(-1)x+tan^(-1)y+tan^(-1) z=(3pi)/(2) then prove that xy+yz+zx=1

If tan^(-1) x + tan^(-1) y - tan^(-1) z = 0 , then prove that : x+ y + xyz = z .

If tan^(-1) x + tan^(-1)y + tan^(-1)z = pi show that : 1/(xy) + 1/(yz) + 1/(zx) = 1

tan^(-1) x + tan^(-1) y + tan^(-1) z = (pi)/2 show that : xy + yz + zx = 1 .

tan^(-1)x+cot^(-1)((1)/(x))+2tan^(-1)z=pi then prove that x+y+2z=xz^(2)+yz^(2)+2xyz

If tan^(-1)x+tan^(-1)y=(pi)/(2), then prove that xy=1

If tan^(-1) x + tan^(-1)y + tan^(-1)z= pi then x + y + z is equal to