Home
Class 12
CHEMISTRY
An element crystallizes in a structure h...

An element crystallizes in a structure having fee unit cell of an edge 200 pm. Calculate the density if 200 g of this element contains `24 xx 10^(23)` atoms.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we will calculate the density of the element that crystallizes in a face-centered cubic (FCC) structure with a given edge length and mass of the element containing a specific number of atoms. ### Step-by-Step Solution: 1. **Identify the Given Data:** - Edge length of the FCC unit cell, \( a = 200 \) pm = \( 200 \times 10^{-12} \) m - Mass of the element, \( m = 200 \) g - Number of atoms in the given mass, \( N = 24 \times 10^{23} \) atoms 2. **Calculate the Mass of One Atom:** The mass of one atom can be calculated using the formula: \[ \text{Mass of one atom} = \frac{\text{Total mass}}{\text{Number of atoms}} = \frac{200 \text{ g}}{24 \times 10^{23} \text{ atoms}} \] \[ = \frac{200}{24 \times 10^{23}} \text{ g/atom} \] \[ = \frac{200}{24} \times 10^{-23} \text{ g/atom} \approx 8.33 \times 10^{-23} \text{ g/atom} \] 3. **Calculate the Mass of the Unit Cell:** In an FCC structure, there are 4 atoms per unit cell. Therefore, the mass of the unit cell can be calculated as: \[ \text{Mass of unit cell} = \text{Mass of one atom} \times \text{Number of atoms in unit cell} = 8.33 \times 10^{-23} \text{ g/atom} \times 4 \] \[ = 33.32 \times 10^{-23} \text{ g} \] 4. **Calculate the Volume of the Unit Cell:** The volume of the unit cell can be calculated using the formula for the volume of a cube: \[ \text{Volume} = a^3 = (200 \times 10^{-12} \text{ m})^3 \] \[ = 8 \times 10^{-30} \text{ m}^3 \] To convert this to cm³: \[ 1 \text{ m}^3 = 10^6 \text{ cm}^3 \implies \text{Volume} = 8 \times 10^{-30} \text{ m}^3 \times 10^6 \text{ cm}^3/\text{m}^3 = 8 \times 10^{-24} \text{ cm}^3 \] 5. **Calculate the Density:** Density (\( \rho \)) is calculated using the formula: \[ \rho = \frac{\text{Mass}}{\text{Volume}} = \frac{33.32 \times 10^{-23} \text{ g}}{8 \times 10^{-24} \text{ cm}^3} \] \[ = \frac{33.32}{8} \text{ g/cm}^3 \approx 4.165 \text{ g/cm}^3 \] 6. **Final Result:** The density of the element is approximately \( 4.165 \text{ g/cm}^3 \).

To solve the problem, we will calculate the density of the element that crystallizes in a face-centered cubic (FCC) structure with a given edge length and mass of the element containing a specific number of atoms. ### Step-by-Step Solution: 1. **Identify the Given Data:** - Edge length of the FCC unit cell, \( a = 200 \) pm = \( 200 \times 10^{-12} \) m - Mass of the element, \( m = 200 \) g - Number of atoms in the given mass, \( N = 24 \times 10^{23} \) atoms ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • SOLID STATE

    ICSE|Exercise FOLLOW UP PROBLEMS(Type II. Calculation of Edge length, Interionic distances and volume of Unit cell.)|4 Videos
  • SOLID STATE

    ICSE|Exercise FOLLOW UP PROBLEMS(Type III. Calculation of Avogadro.s Number)|2 Videos
  • SOLID STATE

    ICSE|Exercise FOLLOW UP PROBLEMS|18 Videos
  • SELF ASSESSMENT PAPER-8

    ICSE|Exercise QUESTIONS|11 Videos
  • SOLUTIONS

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS (Assertion and Reason based questions)|10 Videos

Similar Questions

Explore conceptually related problems

Density of a unit cell is respresented as rho = (" Effective no. of atoms (s)" xx "Mass of a unit cell ")/("Volume of a unit cell ")=(Z.M)/(N_(A).a^(3)) where , Z =mass of effective no . of atoms(s) or ion (s). M= At . mass// formula N_(A) = Avogadro' s no . rArr 6.0323 xx 10^(23) a= edge length of unit cell An element crystallizes in a structure having fcc unit cell of an edge 200 pm . Calculate the density , if 100 g of this element contains 12xx10^(23) atoms :

An element crystallises in a structure having a fcc unit cell of an edge 200 pm. Calculate its density if 400 g of this element contain 48xx10^(23) atoms.

Knowledge Check

  • An element cyrstallises in a structure having a fcc unit cell of and edge 200 pm. Calculate its density if 200 g of this element contains 24xx 10^(23) atoms.

    A
    `"41.66 g cm"^(-3)`
    B
    `"313.9 g cm"^(-3)`
    C
    `"8.117 g cm"^(-3)`
    D
    `"400 g cm"^(-3)`
  • An element A crystallizes in foc structure, 208 g of it has 4.2832 xx 10^24 atoms. Calculate the edge length of the unit cell if density of A is 7.2 gcm^(-3)

    A
    `2 xx 10^(-8) cm`
    B
    `4.3 xx 10^(-8) cm`
    C
    `5.2 xx 10^(-8) cm`
    D
    `3 xx 10^(-8) cm`
  • Similar Questions

    Explore conceptually related problems

    An element crystallizes in a f.c.c. lattice with cell edge of 250 pm. Calculate the density if 300 g of this element contain 2 xx 10^(24) atoms.

    An element crystallises in a f.c.c. lattice with edge length of 400 pm. Calculate the density if 200 g of this element contain 2.5xx10^(24) atoms.

    An element crystallises in fcc lattice with cell edge of 400 pm. Calculate its density if 250 g of this element contain 2.5 xx 10^(24) atoms.

    A element crystallises in a bcc structure. The edge length of its unit cell is 288 pm. If the density of the crystal is 7.3 g cm^(-3) , what is the atomic mass of the element ?

    An element exists in bcc lattice with a cell edge of 288 pm. Calculate its molar density is 7.2g//cm^(3)

    An element (atomic mass = 100 g//mol ) having bcc structure has unit cell edge 400 pm .Them density of the element is