Home
Class 12
MATHS
e^xlogy=sin^(-1)x+sin^(-1)y...

`e^xlogy=sin^(-1)x+sin^(-1)y`

Promotional Banner

Similar Questions

Explore conceptually related problems

Find (dy)/(dx) , when: e^(x)logy=sin^(-1)x+sin^(-1)y

Find dy/dx where e^x logy = sin^(-1)x + sin^(-1)y

The differential sin^(-1) x + sin^(-1) y = 1 , is

Formula for sin^(-1)(x)+-sin^(-1)(y)

If (sin^(-1)x+sin^(-1)w)(sin^(-1)y+sin^(-1)z)=pi^(2), then

f(x)=sin^(-1)[e^(x)]+sin^(-1)[e^(-x)] where [.] greatest integer function then

Prove that : sin^(-1)x+sin^(-1)y=sin^(-1)(xsqrt(1-y^2)+ysqrt(1-x^2))

(sin ^ (- 1) x) ^ (2) + (sin ^ (- 1) y) ^ (2) +2 (sin ^ (- 1) x) (sin ^ (- 1) y) = pi ^ (2), then x ^ (2) + y ^ (2) is equal to

Statement -1: If a^(2)+b^(2)=c^(2),c ne 0 then the non zero solution of the equation sin^(-1)((ax)/(c ))+sin^(-1)((bx)/(c))=sin^(-1)x is pm 1,. Statement-2: sin^(-1)x+sin^(-1)y= sin^(-1)(x+y)

If sin^(-1) x + sin^(-1) y = (pi)/(2) and sin 2x = cos 2y , then