Home
Class 12
MATHS
If cos^(-1)x+cos^(-1)y=pi/2 then prove t...

If `cos^(-1)x+cos^(-1)y=pi/2` then prove that `cos^(-1)x=sin^(-1)y`

Promotional Banner

Similar Questions

Explore conceptually related problems

If sin^(-1)x+cos^(-1)y=(2pi)/(5),"then "cos^(-1)x+sin^(-1)y =

If |x|<=1 then prove that cos^(-1)(-x)=pi-cos^(-1)x

If cos^(-1)x+cos^(-1)y+cos^(-1)z=pi , then

If cos^(-1)x+cos^(-1)y+cos^(-1)z=pi , then

If sin ^ (- 1) x + sin ^ (- 1) y = (pi) / (2), then prove that sin ^ (- 1) x = cos ^ (- 1) y

If sin^(-1) x + sin^(-1) y = (2pi)/3", then " cos^(-1) x + cos^(-1) y

If sin^(-1)x + sin^(-1)y =(2pi)/3 , then: cos^(-1)x +cos^(-1)y=