Home
Class 12
MATHS
Prove that [^(n)C(r)+^(n)C(r-1)]=^(n+1)C...

Prove that `[^(n)C_(r)+^(n)C_(r-1)]=^(n+1)C_(r)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that (r+1)^(n)C_(r)-r^(n)C_(r)+(r-1)^(n)C_(2)-^(n)C_(3)+...+(-1)^(r)n_(C_(r))=(-1)^(r_(n-2))C_(r)

Prove that ""^(n)C_(r )+2""^(n)C_(r-1)+ ""^(n)C_(r-2)= ""^(n+2)C_(r ) .

Prove that ""^(n)C_(r ) ""^(r ) C_(s)= ""^(n)C_(s) ""^(n-s)C_(r-s)

""^(n)C_(r+1)+^(n)C_(r-1)+2.""^(n)C_(r)=

Prove by combinatorial argument that .^(n+1)C_(r)=^(n)C_(r)+^(n)C_(r-1)

Prove that : .^(n-1)C_(r)+.^(n-2)C_(r)+.^(n-3)C_(r)+.........+.^(r)C_(r)=.^(n)C_(r+1) .

Prove that ^nC_(r)+^(n-1)C_(r)+...+^(r)C_(r)=^(n+1)C_(r+1)

Let n and r be no negative integers suych that r<=n. Then,^(n)C_(r)+^(n)C_(r-1)=^(n+1)C_(r)