Home
Class 12
MATHS
A function f is continuous for all x (an...

A function `f` is continuous for all `x` (and not everywhere zero) such that `f^(2)(x)=int_(0)^(x)f(t)(cost)/(2+sint)dt`. Then `f(x)` is

Promotional Banner

Similar Questions

Explore conceptually related problems

Find a function f, continous for all x(and not zero everywhere) such that f^(2)(x)=int_(0)^(x)(f(t) sin t)/(2+ cost)dt

Let f(x)=int_(0)^(x)(sint)/(t)dt(x gt 0) then f(x) has (n in N)

Let f(x) be a continuous function for all x, which is not identically zero such that {f(x)}^(2)=int_(0)^(x)f(t)(2sec^(2)t)/(4+tan t)dt and f(0)=ln4

If f(x) = int_(0)^(x^(2)) sqrt(cost)dt , find f'(x)

if f be a differentiable function such that f(x) =x^(2)int_(0)^(x)e^(-t)f(x-t). dt. Then f(x) =

If f(x)=cos-int_(0)^(x)(x-t)f(t)dt, then f'(x)+f(x) equals

If f(x)=cos x-int_(0)^(x)(x-t)f(t)dt, then f'(x)+f(x) equals

If f(x)=int_(0)^(x)e^(-t)f(x-t)dt then the value of f(3) is

If f(-x)+f(x)=0 then int_(a)^(x)f(t)dt is