Home
Class 12
MATHS
If Tn=(n^2+1)n ! & Sn=T1+T2+T3+....+Tn, ...

If `T_n=(n^2+1)n ! & S_n=T_1+T_2+T_3+....+T_n, l e t I_10/S_10=a/b` where a & b are relatively prime

Promotional Banner

Similar Questions

Explore conceptually related problems

If T_(n)=(n^(2)+1)n!&S_(n)=T_(1)+T_(2)+T_(3)+...+T_(n),let(I_(10))/(S_(10))=(a)/(b) where a &b are relatively prime

If t_n=sum_1^n n , find S_n=sum_1^n t_n .

If T_n = 3n +8 , then T_(n-1) = ________.

If t_n = 3^(n+1) , then S_6 - S_5 = __________.

Suppose a series of n terms given by S_(n)=t_(1)+t_(2)+t_(3)+ . . . . +t_(n) then S_(n-1)=t_(1)+t_(2)+t_(3)+ . . . . +t_(n-1),nge1 subtracting we get S_(n)-S_(n-1)=t_(n),nge2 surther if we put n=1 is the first sum then S_(1)=t_(1) thus w can write t_(n)=S_(n)-S_(n-1),nge2 and t_(1)=S_(1) Q. The sum of n terms of a series is a.2^(n)-b . where a and b are constant then the series is

If t_n = 6n + 5 , then t_(n+1) =_________.

In a series, if t_n = (n^(2) -1)/(n+1) , then S_6 - S_3= _______.

If in a series t_n=n/((n+1)!) then sum_(n=1)^20 t_n is equal to :