Home
Class 12
MATHS
Prove that : tan^(-1)(sqrt(x))=1/2cos^(-...

Prove that : `tan^(-1)(sqrt(x))=1/2cos^(-1)((1-x)/(1+x))`, `xepsilon[0,1]`

Promotional Banner

Similar Questions

Explore conceptually related problems

prove that tan^(-1)(sqrt(x))=(1)/(2)cos^(-1)((1-x)/(1+x)),x in[0,1]

Prove that: quad tan^(-1)sqrt(x)=(1)/(2)cos^(-1)((1-x)/(1+x)),x in[0,1]

Toprove tan ^(-1)sqrt(x)=(1)/(2)cos^(-1)((1-x)/(1+x))

Prove the following: tan^(-1)sqrt(x)=(1)/(2)cos^(-1)((1-x)/(1+x)),x in(0,1)

Prove that : tan^(-1) ((sqrt(1-x^(2)))/(1+x)) = 1/2 cos^(-1) x

tan^(-1)(sqrt((a-x)/(a+x)))=(1)/(2)cos^(-1)((x)/(a))

Prove that tan^(-1)(sqrt((1-cos x)/(1+cos x)))=(x)/(2)

Prove that: sin{tan^(-1)((1-x^(2))/(2x))+cos^(-1)((1-x^(2))/(1+x^(2)))}=1

Prove that tan^(-1) x =sec^(-1) sqrt(1+x^2)

Prove that: sin[tan^(-1)((1 - x^2)/(2x)) + cos^(-1) ((1 - x^2)/(1 + x^2))] = 1