Home
Class 11
MATHS
y=(tanx)^(cotx)+(cotx)^(tanx)...

`y=(tanx)^(cotx)+(cotx)^(tanx)`

Promotional Banner

Similar Questions

Explore conceptually related problems

(tanx-cotx)^(2)

What is the derivative of (log_(tanx)cotx)(log_(cotx)tanx)^(-1) at x=(pi)/(4) ?

(1+cos4x)/(cotx-tanx)

int1/(cos^6x+sin^6x)dx is equal to (A) tan^-1(tanx-cotx)+c (B) sin^-1(sin2x)+c (C) tan^-1(tanx+cotx)+c (D) cot^-1(tanx+cotx)+c

Differentiate the following w.r.t. x : (tanx)^(cotx)+x^(tanx),0ltxltpi/4

If f(x)=(log_(cotx)tanx)(log_(tanx)cotx)^(-1) +tan^(-1)((4x)/(sqrt(4-x^(2)))) , then f'(0) is equal to

(d)/(dx)[tan^(-1)(cotx)+cot^(-1)(tanx)]=

(d)/(dx)((cotx-tanx)/(cotx+tanx))=

If y=(tanx+cotx)/(tanx-cotx)," then: "(dy)/(dx)=