Home
Class 11
MATHS
If A+B+C=pi, then cos ^(2) ""(A)/(2) + c...

If `A+B+C=pi,` then `cos ^(2) ""(A)/(2) + cos ^(2) ""(B)/(2) - cos ^(2) ""(C )/(2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If : A+B+C= pi "then" : 1 - sin^(2)""(A)/(2) - sin^(2)""(B)/(2)+ sin^(2)""(C)/(2)= A) 2cos""(A)/(2) * cos sin ^(2)""(B)/(2) + sin^(2)""(C)/(2) B) 2 cos ""(B)/(2)* cos ""(B)/(2) * sin""(C)/(2) C) 2 cos ""(C)/(2)* cos ""(A)/(2) * sin""(B)/(2) D) 2 cos ""(A)/(2)* cos ""(B)/(2) * sin""(C)/(2)

If A+B+C=pi then prove that cos^(2)((A)/(2))+cos^(2)((B)/(2))-cos^(2)((C)/(2))=2cos((A)/(2))cos((B)/(2))sin((C)/(2))

A + B + C = 180 ^ (@) => cos ^ (2) ((A) / (2)) + cos ^ (2) ((B) / (2)) + cos ^ (2) (( C) / (2)) =

(a cos ^ (2) ((A) / (2)) + b cos ^ (2) ((B) / (2)) + c cos ^ (2) ((C) / (2))) / (a + b + c) <= (3) / (4)

If A+B+C=pi then prove cos( (A)/2) cos( (B-C)/2) + cos( B/2) cos((C-A)/2) + cos( C/2) cos( (A-B)/2) = sinA +sinB+sinC

If A+B+C =pi, then cos ^(2) A+ cos ^(2)B - cos^(2) C is equal to

If A+B+C=pi then cos((B)/(2))+cos((C)/(2)) equals

If A+B+C=pi , then cos^(2)A+cos^(2)B+cos^(2)C is equal to

In any Delta ABC, prove the following: (a+b+c)(cos A+cos B+cos C)=2((a cos^(2))(1)/(2)(A+b cos^(2))(1)/(2)(B+cos^(2))(1)/(2)C)

If A+B+C=180^0 , prove that : cos^2(A/2) + cos^2(B/2) - cos^2(C/2) = 2cos(A/2) cos(B/2) sin( C/2)