Home
Class 12
MATHS
If f^(prime)(x)=sqrt(2x^2-1) and y=f(x^2...

If `f^(prime)(x)=sqrt(2x^2-1)` and `y=f(x^2)` , then find `(dy)/(dx)` at `x=1` .

Promotional Banner

Similar Questions

Explore conceptually related problems

If f'(x)=sqrt(2x^(2)-1) and y=f(x^(2)), then find (dy)/(dx) at x=1

If f'(x)=sqrt(2x^(2)-1) and y=f(x^(2)), then (dy)/(dx) at x=1, is

if f'(x)=sqrt(2x^(2)-1) and y=f(x^(2)) then (dy)/(dx) at x=1 is:

If f'(x)=sqrt(2x^(2)-1) and y=f(x^(2)), then (dy)/(dx) at x=1 is equal to 2b 1c.-2d.-1

Let f'(x)=sin(x^(2)) and y=f(x^(2)+1) then (dy)/(dx) at x=1 is

If f(x)=sqrt(3x^(2)+6) and y=f(x^(3)), then at x=1,(dy)/(dx) is equal to

If 5f(x)+3f((1)/(x))=x+2 and y=xf(x) then find (dy)/(dx) at x=1

If f'(x)=sqrt(2x^(2)-1) and f(x^(2)), then (dy)/(dx) at x=1 is equal to 2(b)1(c)-2(d)-1

f'(x)=sqrt(2x^(2)-1) and y=f(x^(2)), then (dy)/(dx) at x=1 is 2(b)1(c)-2 (d) none of these

y=f((2x-1)/(x^(2)-1)) and f'(x)=sin x then (dy)/(dx)